Metamath Proof Explorer


Theorem axc5c7toc5

Description: Rederivation of ax-c5 from axc5c7 . Only propositional calculus is used for the rederivation. (Contributed by Scott Fenton, 12-Sep-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c7toc5 x φ φ

Proof

Step Hyp Ref Expression
1 ax-1 x φ x ¬ x φ x φ
2 axc5c7 x ¬ x φ x φ φ
3 1 2 syl x φ φ