Metamath Proof Explorer


Theorem axc711

Description: Proof of a single axiom that can replace both ax-c7 and ax-11 . See axc711toc7 and axc711to11 for the rederivation of those axioms. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711 ¬ x ¬ y x φ y φ

Proof

Step Hyp Ref Expression
1 ax-11 y x φ x y φ
2 1 con3i ¬ x y φ ¬ y x φ
3 2 alimi x ¬ x y φ x ¬ y x φ
4 3 con3i ¬ x ¬ y x φ ¬ x ¬ x y φ
5 ax-c7 ¬ x ¬ x y φ y φ
6 4 5 syl ¬ x ¬ y x φ y φ