Metamath Proof Explorer


Theorem axc711to11

Description: Rederivation of ax-11 from axc711 . Note that ax-c7 and ax-11 are not used by the rederivation. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711to11 x y φ y x φ

Proof

Step Hyp Ref Expression
1 axc711toc7 ¬ y ¬ y ¬ x y φ ¬ x y φ
2 1 con4i x y φ y ¬ y ¬ x y φ
3 axc711 ¬ y ¬ x y φ x φ
4 3 alimi y ¬ y ¬ x y φ y x φ
5 2 4 syl x y φ y x φ