Metamath Proof Explorer


Theorem axc711toc7

Description: Rederivation of ax-c7 from axc711 . Note that ax-c7 and ax-11 are not used by the rederivation. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711toc7 ¬ x ¬ x φ φ

Proof

Step Hyp Ref Expression
1 hba1-o x φ x x φ
2 1 con3i ¬ x x φ ¬ x φ
3 2 alimi x ¬ x x φ x ¬ x φ
4 3 con3i ¬ x ¬ x φ ¬ x ¬ x x φ
5 axc711 ¬ x ¬ x x φ x φ
6 ax-c5 x φ φ
7 4 5 6 3syl ¬ x ¬ x φ φ