Step |
Hyp |
Ref |
Expression |
1 |
|
axcc3.1 |
|
2 |
|
axcc3.2 |
|
3 |
|
relen |
|
4 |
3
|
brrelex1i |
|
5 |
|
mptexg |
|
6 |
2 4 5
|
mp2b |
|
7 |
|
bren |
|
8 |
2 7
|
mpbi |
|
9 |
|
axcc2 |
|
10 |
|
f1of |
|
11 |
|
fnfco |
|
12 |
10 11
|
sylan2 |
|
13 |
12
|
adantlr |
|
14 |
13
|
3adant1 |
|
15 |
|
nfmpt1 |
|
16 |
15
|
nfeq2 |
|
17 |
|
nfv |
|
18 |
|
nfv |
|
19 |
16 17 18
|
nf3an |
|
20 |
10
|
ffvelrnda |
|
21 |
|
fveq2 |
|
22 |
21
|
neeq1d |
|
23 |
|
fveq2 |
|
24 |
23 21
|
eleq12d |
|
25 |
22 24
|
imbi12d |
|
26 |
25
|
rspcv |
|
27 |
20 26
|
syl |
|
28 |
27
|
3ad2antl3 |
|
29 |
|
f1ocnv |
|
30 |
|
f1of |
|
31 |
29 30
|
syl |
|
32 |
|
fvco3 |
|
33 |
31 20 32
|
syl2an2r |
|
34 |
33
|
3adant1 |
|
35 |
|
f1ocnvfv1 |
|
36 |
35
|
fveq2d |
|
37 |
36
|
3adant1 |
|
38 |
|
fveq1 |
|
39 |
|
eqid |
|
40 |
39
|
fvmpt2 |
|
41 |
1 40
|
mpan2 |
|
42 |
38 41
|
sylan9eq |
|
43 |
42
|
3adant2 |
|
44 |
34 37 43
|
3eqtrd |
|
45 |
44
|
3expa |
|
46 |
45
|
3adantl2 |
|
47 |
46
|
neeq1d |
|
48 |
10
|
3ad2ant3 |
|
49 |
|
fvco3 |
|
50 |
48 49
|
sylan |
|
51 |
50
|
eleq1d |
|
52 |
46
|
eleq2d |
|
53 |
51 52
|
bitr3d |
|
54 |
47 53
|
imbi12d |
|
55 |
28 54
|
sylibd |
|
56 |
55
|
ex |
|
57 |
56
|
com23 |
|
58 |
57
|
3exp |
|
59 |
58
|
com34 |
|
60 |
59
|
imp32 |
|
61 |
60
|
3impia |
|
62 |
19 61
|
ralrimi |
|
63 |
|
vex |
|
64 |
|
vex |
|
65 |
63 64
|
coex |
|
66 |
|
fneq1 |
|
67 |
|
fveq1 |
|
68 |
67
|
eleq1d |
|
69 |
68
|
imbi2d |
|
70 |
69
|
ralbidv |
|
71 |
66 70
|
anbi12d |
|
72 |
65 71
|
spcev |
|
73 |
14 62 72
|
syl2anc |
|
74 |
73
|
3exp |
|
75 |
74
|
exlimdv |
|
76 |
9 75
|
mpi |
|
77 |
76
|
exlimdv |
|
78 |
8 77
|
mpi |
|
79 |
6 78
|
vtocle |
|