Metamath Proof Explorer


Theorem axcc3

Description: A possibly more useful version of ax-cc using sequences F ( n ) instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses axcc3.1 F V
axcc3.2 N ω
Assertion axcc3 f f Fn N n N F f n F

Proof

Step Hyp Ref Expression
1 axcc3.1 F V
2 axcc3.2 N ω
3 relen Rel
4 3 brrelex1i N ω N V
5 mptexg N V n N F V
6 2 4 5 mp2b n N F V
7 bren N ω h h : N 1-1 onto ω
8 2 7 mpbi h h : N 1-1 onto ω
9 axcc2 g g Fn ω m ω k h -1 m g m k h -1 m
10 f1of h : N 1-1 onto ω h : N ω
11 fnfco g Fn ω h : N ω g h Fn N
12 10 11 sylan2 g Fn ω h : N 1-1 onto ω g h Fn N
13 12 adantlr g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω g h Fn N
14 13 3adant1 k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω g h Fn N
15 nfmpt1 _ n n N F
16 15 nfeq2 n k = n N F
17 nfv n g Fn ω m ω k h -1 m g m k h -1 m
18 nfv n h : N 1-1 onto ω
19 16 17 18 nf3an n k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω
20 10 ffvelrnda h : N 1-1 onto ω n N h n ω
21 fveq2 m = h n k h -1 m = k h -1 h n
22 21 neeq1d m = h n k h -1 m k h -1 h n
23 fveq2 m = h n g m = g h n
24 23 21 eleq12d m = h n g m k h -1 m g h n k h -1 h n
25 22 24 imbi12d m = h n k h -1 m g m k h -1 m k h -1 h n g h n k h -1 h n
26 25 rspcv h n ω m ω k h -1 m g m k h -1 m k h -1 h n g h n k h -1 h n
27 20 26 syl h : N 1-1 onto ω n N m ω k h -1 m g m k h -1 m k h -1 h n g h n k h -1 h n
28 27 3ad2antl3 k = n N F g Fn ω h : N 1-1 onto ω n N m ω k h -1 m g m k h -1 m k h -1 h n g h n k h -1 h n
29 f1ocnv h : N 1-1 onto ω h -1 : ω 1-1 onto N
30 f1of h -1 : ω 1-1 onto N h -1 : ω N
31 29 30 syl h : N 1-1 onto ω h -1 : ω N
32 fvco3 h -1 : ω N h n ω k h -1 h n = k h -1 h n
33 31 20 32 syl2an2r h : N 1-1 onto ω n N k h -1 h n = k h -1 h n
34 33 3adant1 k = n N F h : N 1-1 onto ω n N k h -1 h n = k h -1 h n
35 f1ocnvfv1 h : N 1-1 onto ω n N h -1 h n = n
36 35 fveq2d h : N 1-1 onto ω n N k h -1 h n = k n
37 36 3adant1 k = n N F h : N 1-1 onto ω n N k h -1 h n = k n
38 fveq1 k = n N F k n = n N F n
39 eqid n N F = n N F
40 39 fvmpt2 n N F V n N F n = F
41 1 40 mpan2 n N n N F n = F
42 38 41 sylan9eq k = n N F n N k n = F
43 42 3adant2 k = n N F h : N 1-1 onto ω n N k n = F
44 34 37 43 3eqtrd k = n N F h : N 1-1 onto ω n N k h -1 h n = F
45 44 3expa k = n N F h : N 1-1 onto ω n N k h -1 h n = F
46 45 3adantl2 k = n N F g Fn ω h : N 1-1 onto ω n N k h -1 h n = F
47 46 neeq1d k = n N F g Fn ω h : N 1-1 onto ω n N k h -1 h n F
48 10 3ad2ant3 k = n N F g Fn ω h : N 1-1 onto ω h : N ω
49 fvco3 h : N ω n N g h n = g h n
50 48 49 sylan k = n N F g Fn ω h : N 1-1 onto ω n N g h n = g h n
51 50 eleq1d k = n N F g Fn ω h : N 1-1 onto ω n N g h n k h -1 h n g h n k h -1 h n
52 46 eleq2d k = n N F g Fn ω h : N 1-1 onto ω n N g h n k h -1 h n g h n F
53 51 52 bitr3d k = n N F g Fn ω h : N 1-1 onto ω n N g h n k h -1 h n g h n F
54 47 53 imbi12d k = n N F g Fn ω h : N 1-1 onto ω n N k h -1 h n g h n k h -1 h n F g h n F
55 28 54 sylibd k = n N F g Fn ω h : N 1-1 onto ω n N m ω k h -1 m g m k h -1 m F g h n F
56 55 ex k = n N F g Fn ω h : N 1-1 onto ω n N m ω k h -1 m g m k h -1 m F g h n F
57 56 com23 k = n N F g Fn ω h : N 1-1 onto ω m ω k h -1 m g m k h -1 m n N F g h n F
58 57 3exp k = n N F g Fn ω h : N 1-1 onto ω m ω k h -1 m g m k h -1 m n N F g h n F
59 58 com34 k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω n N F g h n F
60 59 imp32 k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω n N F g h n F
61 60 3impia k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω n N F g h n F
62 19 61 ralrimi k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω n N F g h n F
63 vex g V
64 vex h V
65 63 64 coex g h V
66 fneq1 f = g h f Fn N g h Fn N
67 fveq1 f = g h f n = g h n
68 67 eleq1d f = g h f n F g h n F
69 68 imbi2d f = g h F f n F F g h n F
70 69 ralbidv f = g h n N F f n F n N F g h n F
71 66 70 anbi12d f = g h f Fn N n N F f n F g h Fn N n N F g h n F
72 65 71 spcev g h Fn N n N F g h n F f f Fn N n N F f n F
73 14 62 72 syl2anc k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω f f Fn N n N F f n F
74 73 3exp k = n N F g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω f f Fn N n N F f n F
75 74 exlimdv k = n N F g g Fn ω m ω k h -1 m g m k h -1 m h : N 1-1 onto ω f f Fn N n N F f n F
76 9 75 mpi k = n N F h : N 1-1 onto ω f f Fn N n N F f n F
77 76 exlimdv k = n N F h h : N 1-1 onto ω f f Fn N n N F f n F
78 8 77 mpi k = n N F f f Fn N n N F f n F
79 6 78 vtocle f f Fn N n N F f n F