Metamath Proof Explorer


Theorem axcc4

Description: A version of axcc3 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013)

Ref Expression
Hypotheses axcc4.1 A V
axcc4.2 N ω
axcc4.3 x = f n φ ψ
Assertion axcc4 n N x A φ f f : N A n N ψ

Proof

Step Hyp Ref Expression
1 axcc4.1 A V
2 axcc4.2 N ω
3 axcc4.3 x = f n φ ψ
4 1 rabex x A | φ V
5 4 2 axcc3 f f Fn N n N x A | φ f n x A | φ
6 rabn0 x A | φ x A φ
7 pm2.27 x A | φ x A | φ f n x A | φ f n x A | φ
8 6 7 sylbir x A φ x A | φ f n x A | φ f n x A | φ
9 3 elrab f n x A | φ f n A ψ
10 8 9 syl6ib x A φ x A | φ f n x A | φ f n A ψ
11 10 ral2imi n N x A φ n N x A | φ f n x A | φ n N f n A ψ
12 simpl f n A ψ f n A
13 12 ralimi n N f n A ψ n N f n A
14 11 13 syl6 n N x A φ n N x A | φ f n x A | φ n N f n A
15 14 anim2d n N x A φ f Fn N n N x A | φ f n x A | φ f Fn N n N f n A
16 ffnfv f : N A f Fn N n N f n A
17 15 16 syl6ibr n N x A φ f Fn N n N x A | φ f n x A | φ f : N A
18 simpr f n A ψ ψ
19 18 ralimi n N f n A ψ n N ψ
20 11 19 syl6 n N x A φ n N x A | φ f n x A | φ n N ψ
21 20 adantld n N x A φ f Fn N n N x A | φ f n x A | φ n N ψ
22 17 21 jcad n N x A φ f Fn N n N x A | φ f n x A | φ f : N A n N ψ
23 22 eximdv n N x A φ f f Fn N n N x A | φ f n x A | φ f f : N A n N ψ
24 5 23 mpi n N x A φ f f : N A n N ψ