Metamath Proof Explorer


Theorem axccd

Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses axccd.1 φ A ω
axccd.2 φ x A x
Assertion axccd φ f x A f x x

Proof

Step Hyp Ref Expression
1 axccd.1 φ A ω
2 axccd.2 φ x A x
3 encv A ω A V ω V
4 3 simpld A ω A V
5 breq1 y = A y ω A ω
6 raleq y = A x y x f x x x A x f x x
7 6 exbidv y = A f x y x f x x f x A x f x x
8 5 7 imbi12d y = A y ω f x y x f x x A ω f x A x f x x
9 ax-cc y ω f x y x f x x
10 8 9 vtoclg A V A ω f x A x f x x
11 1 4 10 3syl φ A ω f x A x f x x
12 1 11 mpd φ f x A x f x x
13 nfv x φ
14 nfra1 x x A x f x x
15 13 14 nfan x φ x A x f x x
16 2 adantlr φ x A x f x x x A x
17 rspa x A x f x x x A x f x x
18 17 adantll φ x A x f x x x A x f x x
19 16 18 mpd φ x A x f x x x A f x x
20 15 19 ralrimia φ x A x f x x x A f x x
21 20 ex φ x A x f x x x A f x x
22 21 eximdv φ f x A x f x x f x A f x x
23 12 22 mpd φ f x A f x x