Metamath Proof Explorer


Theorem axccd2

Description: An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses axccd2.1 φ A ω
axccd2.2 φ x A x
Assertion axccd2 φ f x A f x x

Proof

Step Hyp Ref Expression
1 axccd2.1 φ A ω
2 axccd2.2 φ x A x
3 isfinite2 A ω A Fin
4 3 adantl φ A ω A Fin
5 simpr φ A ω x A x A
6 2 adantlr φ A ω x A x
7 4 5 6 choicefi φ A ω f f Fn A x A f x x
8 simpr f Fn A x A f x x x A f x x
9 8 a1i φ A ω f Fn A x A f x x x A f x x
10 9 eximdv φ A ω f f Fn A x A f x x f x A f x x
11 7 10 mpd φ A ω f x A f x x
12 1 anim1i φ ¬ A ω A ω ¬ A ω
13 bren2 A ω A ω ¬ A ω
14 12 13 sylibr φ ¬ A ω A ω
15 simpr φ A ω A ω
16 2 adantlr φ A ω x A x
17 15 16 axccd φ A ω f x A f x x
18 14 17 syldan φ ¬ A ω f x A f x x
19 11 18 pm2.61dan φ f x A f x x