Step |
Hyp |
Ref |
Expression |
1 |
|
axccdom.1 |
|
2 |
|
axccdom.2 |
|
3 |
|
simpr |
|
4 |
|
simpr |
|
5 |
2
|
adantlr |
|
6 |
3 4 5
|
choicefi |
|
7 |
1
|
adantr |
|
8 |
|
isfinite2 |
|
9 |
8
|
con3i |
|
10 |
9
|
adantl |
|
11 |
7 10
|
jca |
|
12 |
|
bren2 |
|
13 |
11 12
|
sylibr |
|
14 |
|
ctex |
|
15 |
1 14
|
syl |
|
16 |
15
|
adantr |
|
17 |
|
simpr |
|
18 |
|
breq1 |
|
19 |
|
raleq |
|
20 |
19
|
exbidv |
|
21 |
18 20
|
imbi12d |
|
22 |
|
ax-cc |
|
23 |
21 22
|
vtoclg |
|
24 |
16 17 23
|
sylc |
|
25 |
15
|
mptexd |
|
26 |
25
|
adantr |
|
27 |
|
fvex |
|
28 |
27
|
rgenw |
|
29 |
|
eqid |
|
30 |
29
|
fnmpt |
|
31 |
28 30
|
ax-mp |
|
32 |
31
|
a1i |
|
33 |
|
nfv |
|
34 |
|
nfra1 |
|
35 |
33 34
|
nfan |
|
36 |
|
id |
|
37 |
27
|
a1i |
|
38 |
29
|
fvmpt2 |
|
39 |
36 37 38
|
syl2anc |
|
40 |
39
|
adantl |
|
41 |
|
rspa |
|
42 |
41
|
adantll |
|
43 |
2
|
adantlr |
|
44 |
|
id |
|
45 |
42 43 44
|
sylc |
|
46 |
40 45
|
eqeltrd |
|
47 |
46
|
ex |
|
48 |
35 47
|
ralrimi |
|
49 |
32 48
|
jca |
|
50 |
|
fneq1 |
|
51 |
|
nfcv |
|
52 |
|
nfmpt1 |
|
53 |
51 52
|
nfeq |
|
54 |
|
fveq1 |
|
55 |
54
|
eleq1d |
|
56 |
53 55
|
ralbid |
|
57 |
50 56
|
anbi12d |
|
58 |
57
|
spcegv |
|
59 |
26 49 58
|
sylc |
|
60 |
59
|
adantlr |
|
61 |
60
|
ex |
|
62 |
61
|
exlimdv |
|
63 |
24 62
|
mpd |
|
64 |
13 63
|
syldan |
|
65 |
6 64
|
pm2.61dan |
|