Step |
Hyp |
Ref |
Expression |
1 |
|
axcclem.1 |
|
2 |
|
axcclem.2 |
|
3 |
|
axcclem.3 |
|
4 |
|
isfinite2 |
|
5 |
1
|
eleq1i |
|
6 |
|
undif1 |
|
7 |
|
snfi |
|
8 |
|
unfi |
|
9 |
7 8
|
mpan2 |
|
10 |
6 9
|
eqeltrrid |
|
11 |
|
ssun1 |
|
12 |
|
ssfi |
|
13 |
10 11 12
|
sylancl |
|
14 |
5 13
|
sylbi |
|
15 |
|
dcomex |
|
16 |
|
isfiniteg |
|
17 |
15 16
|
ax-mp |
|
18 |
|
sdomnen |
|
19 |
17 18
|
sylbi |
|
20 |
4 14 19
|
3syl |
|
21 |
20
|
con2i |
|
22 |
|
sdomentr |
|
23 |
22
|
expcom |
|
24 |
21 23
|
mtod |
|
25 |
|
vex |
|
26 |
|
difss |
|
27 |
1 26
|
eqsstri |
|
28 |
|
ssdomg |
|
29 |
25 27 28
|
mp2 |
|
30 |
24 29
|
jctil |
|
31 |
|
bren2 |
|
32 |
30 31
|
sylibr |
|
33 |
|
entr |
|
34 |
32 33
|
mpancom |
|
35 |
|
ensym |
|
36 |
|
bren |
|
37 |
|
f1of |
|
38 |
|
peano1 |
|
39 |
|
ffvelrn |
|
40 |
37 38 39
|
sylancl |
|
41 |
|
eldifn |
|
42 |
41 1
|
eleq2s |
|
43 |
|
fvex |
|
44 |
43
|
elsn |
|
45 |
44
|
notbii |
|
46 |
|
neq0 |
|
47 |
45 46
|
bitr2i |
|
48 |
42 47
|
sylibr |
|
49 |
40 48
|
syl |
|
50 |
|
elunii |
|
51 |
40 50
|
sylan2 |
|
52 |
37
|
ffvelrnda |
|
53 |
|
difabs |
|
54 |
1
|
difeq1i |
|
55 |
53 54 1
|
3eqtr4i |
|
56 |
|
pwuni |
|
57 |
|
ssdif |
|
58 |
56 57
|
ax-mp |
|
59 |
55 58
|
eqsstrri |
|
60 |
59
|
sseli |
|
61 |
60
|
ralrimivw |
|
62 |
52 61
|
syl |
|
63 |
62
|
ralrimiva |
|
64 |
2
|
fmpo |
|
65 |
63 64
|
sylib |
|
66 |
65
|
adantl |
|
67 |
25
|
difexi |
|
68 |
1 67
|
eqeltri |
|
69 |
68
|
uniex |
|
70 |
69
|
axdc4 |
|
71 |
51 66 70
|
syl2anc |
|
72 |
|
3simpb |
|
73 |
72
|
eximi |
|
74 |
71 73
|
syl |
|
75 |
74
|
ex |
|
76 |
75
|
exlimiv |
|
77 |
49 76
|
mpcom |
|
78 |
|
velsn |
|
79 |
78
|
necon3bbii |
|
80 |
1
|
eleq2i |
|
81 |
|
eldif |
|
82 |
80 81
|
sylbbr |
|
83 |
79 82
|
sylan2br |
|
84 |
|
simpl |
|
85 |
|
f1ofo |
|
86 |
|
foelrn |
|
87 |
85 86
|
sylan |
|
88 |
|
suceq |
|
89 |
88
|
fveq2d |
|
90 |
|
id |
|
91 |
|
fveq2 |
|
92 |
90 91
|
oveq12d |
|
93 |
89 92
|
eleq12d |
|
94 |
93
|
rspcv |
|
95 |
94
|
3ad2ant3 |
|
96 |
95
|
imp |
|
97 |
96
|
3adant3 |
|
98 |
|
eqcom |
|
99 |
|
f1ocnvfv |
|
100 |
98 99
|
syl5bi |
|
101 |
100
|
3adant1 |
|
102 |
101
|
imp |
|
103 |
102
|
eqcomd |
|
104 |
103
|
3adant2 |
|
105 |
|
suceq |
|
106 |
104 105
|
syl |
|
107 |
106
|
fveq2d |
|
108 |
|
simpr |
|
109 |
|
ffvelrn |
|
110 |
|
fveq2 |
|
111 |
|
eqidd |
|
112 |
|
fvex |
|
113 |
110 111 2 112
|
ovmpo |
|
114 |
108 109 113
|
syl2anc |
|
115 |
114
|
3adant2 |
|
116 |
115
|
3ad2ant1 |
|
117 |
97 107 116
|
3eltr3d |
|
118 |
37
|
ffvelrnda |
|
119 |
118
|
3adant1 |
|
120 |
119
|
3ad2ant1 |
|
121 |
|
eleq1 |
|
122 |
121
|
3ad2ant3 |
|
123 |
120 122
|
mpbird |
|
124 |
|
fveq2 |
|
125 |
|
suceq |
|
126 |
124 125
|
syl |
|
127 |
126
|
fveq2d |
|
128 |
|
fvex |
|
129 |
127 3 128
|
fvmpt |
|
130 |
123 129
|
syl |
|
131 |
|
simp3 |
|
132 |
117 130 131
|
3eltr4d |
|
133 |
132
|
3exp |
|
134 |
133
|
com3r |
|
135 |
134
|
3expd |
|
136 |
135
|
com4r |
|
137 |
136
|
rexlimiv |
|
138 |
87 137
|
syl |
|
139 |
84 138
|
mpid |
|
140 |
139
|
impd |
|
141 |
140
|
impancom |
|
142 |
83 141
|
syl5 |
|
143 |
142
|
expd |
|
144 |
143
|
ralrimiv |
|
145 |
|
fvrn0 |
|
146 |
145
|
rgenw |
|
147 |
|
eqid |
|
148 |
147
|
fmpt |
|
149 |
146 148
|
mpbi |
|
150 |
|
vex |
|
151 |
150
|
rnex |
|
152 |
|
p0ex |
|
153 |
151 152
|
unex |
|
154 |
|
fex2 |
|
155 |
149 68 153 154
|
mp3an |
|
156 |
3 155
|
eqeltri |
|
157 |
|
fveq1 |
|
158 |
157
|
eleq1d |
|
159 |
158
|
imbi2d |
|
160 |
159
|
ralbidv |
|
161 |
156 160
|
spcev |
|
162 |
144 161
|
syl |
|
163 |
77 162
|
exlimddv |
|
164 |
163
|
exlimiv |
|
165 |
36 164
|
sylbi |
|
166 |
34 35 165
|
3syl |
|