Step |
Hyp |
Ref |
Expression |
1 |
|
df-c |
|
2 |
|
eqeq1 |
|
3 |
2
|
2rexbidv |
|
4 |
|
opelreal |
|
5 |
|
opelreal |
|
6 |
4 5
|
anbi12i |
|
7 |
6
|
biimpri |
|
8 |
|
df-i |
|
9 |
8
|
oveq1i |
|
10 |
|
0r |
|
11 |
|
1sr |
|
12 |
|
mulcnsr |
|
13 |
10 11 12
|
mpanl12 |
|
14 |
10 13
|
mpan2 |
|
15 |
|
mulcomsr |
|
16 |
|
00sr |
|
17 |
15 16
|
eqtrid |
|
18 |
17
|
oveq1d |
|
19 |
|
00sr |
|
20 |
11 19
|
ax-mp |
|
21 |
20
|
oveq2i |
|
22 |
|
m1r |
|
23 |
|
00sr |
|
24 |
22 23
|
ax-mp |
|
25 |
21 24
|
eqtri |
|
26 |
25
|
oveq2i |
|
27 |
|
0idsr |
|
28 |
10 27
|
ax-mp |
|
29 |
26 28
|
eqtri |
|
30 |
18 29
|
eqtrdi |
|
31 |
|
mulcomsr |
|
32 |
|
1idsr |
|
33 |
31 32
|
eqtrid |
|
34 |
33
|
oveq1d |
|
35 |
|
00sr |
|
36 |
10 35
|
ax-mp |
|
37 |
36
|
oveq2i |
|
38 |
|
0idsr |
|
39 |
37 38
|
eqtrid |
|
40 |
34 39
|
eqtrd |
|
41 |
30 40
|
opeq12d |
|
42 |
14 41
|
eqtrd |
|
43 |
9 42
|
eqtrid |
|
44 |
43
|
oveq2d |
|
45 |
44
|
adantl |
|
46 |
|
addcnsr |
|
47 |
10 46
|
mpanl2 |
|
48 |
10 47
|
mpanr1 |
|
49 |
|
0idsr |
|
50 |
|
addcomsr |
|
51 |
50 38
|
eqtrid |
|
52 |
|
opeq12 |
|
53 |
49 51 52
|
syl2an |
|
54 |
45 48 53
|
3eqtrrd |
|
55 |
|
opex |
|
56 |
|
opex |
|
57 |
|
eleq1 |
|
58 |
|
eleq1 |
|
59 |
57 58
|
bi2anan9 |
|
60 |
|
oveq1 |
|
61 |
|
oveq2 |
|
62 |
61
|
oveq2d |
|
63 |
60 62
|
sylan9eq |
|
64 |
63
|
eqeq2d |
|
65 |
59 64
|
anbi12d |
|
66 |
55 56 65
|
spc2ev |
|
67 |
7 54 66
|
syl2anc |
|
68 |
|
r2ex |
|
69 |
67 68
|
sylibr |
|
70 |
1 3 69
|
optocl |
|