Metamath Proof Explorer


Theorem axdc3lem

Description: The class S of finite approximations to the DC sequence is a set. (We derive here the stronger statement that S is a subset of a specific set, namely ~P ( _om X. A ) .) (Contributed by Mario Carneiro, 27-Jan-2013) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014)

Ref Expression
Hypotheses axdc3lem.1 A V
axdc3lem.2 S = s | n ω s : suc n A s = C k n s suc k F s k
Assertion axdc3lem S V

Proof

Step Hyp Ref Expression
1 axdc3lem.1 A V
2 axdc3lem.2 S = s | n ω s : suc n A s = C k n s suc k F s k
3 dcomex ω V
4 3 1 xpex ω × A V
5 4 pwex 𝒫 ω × A V
6 fssxp s : suc n A s suc n × A
7 peano2 n ω suc n ω
8 omelon2 ω V ω On
9 3 8 ax-mp ω On
10 9 onelssi suc n ω suc n ω
11 xpss1 suc n ω suc n × A ω × A
12 7 10 11 3syl n ω suc n × A ω × A
13 6 12 sylan9ss s : suc n A n ω s ω × A
14 velpw s 𝒫 ω × A s ω × A
15 13 14 sylibr s : suc n A n ω s 𝒫 ω × A
16 15 ancoms n ω s : suc n A s 𝒫 ω × A
17 16 3ad2antr1 n ω s : suc n A s = C k n s suc k F s k s 𝒫 ω × A
18 17 rexlimiva n ω s : suc n A s = C k n s suc k F s k s 𝒫 ω × A
19 18 abssi s | n ω s : suc n A s = C k n s suc k F s k 𝒫 ω × A
20 2 19 eqsstri S 𝒫 ω × A
21 5 20 ssexi S V