Metamath Proof Explorer


Theorem axdc3lem2

Description: Lemma for axdc3 . We have constructed a "candidate set" S , which consists of all finite sequences s that satisfy our property of interest, namely s ( x + 1 ) e. F ( s ( x ) ) on its domain, but with the added constraint that s ( 0 ) = C . These sets are possible "initial segments" of theinfinite sequence satisfying these constraints, but we can leverage the standard ax-dc (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely ( hn ) : m --> A (for some integer m ). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence h , we can construct the sequence g that we are after. (Contributed by Mario Carneiro, 30-Jan-2013)

Ref Expression
Hypotheses axdc3lem2.1 A V
axdc3lem2.2 S = s | n ω s : suc n A s = C k n s suc k F s k
axdc3lem2.3 G = x S y S | dom y = suc dom x y dom x = x
Assertion axdc3lem2 h h : ω S k ω h suc k G h k g g : ω A g = C k ω g suc k F g k

Proof

Step Hyp Ref Expression
1 axdc3lem2.1 A V
2 axdc3lem2.2 S = s | n ω s : suc n A s = C k n s suc k F s k
3 axdc3lem2.3 G = x S y S | dom y = suc dom x y dom x = x
4 id m = m =
5 fveq2 m = h m = h
6 5 dmeqd m = dom h m = dom h
7 4 6 eleq12d m = m dom h m dom h
8 eleq2 m = j m j
9 5 sseq2d m = h j h m h j h
10 8 9 imbi12d m = j m h j h m j h j h
11 7 10 anbi12d m = m dom h m j m h j h m dom h j h j h
12 id m = i m = i
13 fveq2 m = i h m = h i
14 13 dmeqd m = i dom h m = dom h i
15 12 14 eleq12d m = i m dom h m i dom h i
16 elequ2 m = i j m j i
17 13 sseq2d m = i h j h m h j h i
18 16 17 imbi12d m = i j m h j h m j i h j h i
19 15 18 anbi12d m = i m dom h m j m h j h m i dom h i j i h j h i
20 id m = suc i m = suc i
21 fveq2 m = suc i h m = h suc i
22 21 dmeqd m = suc i dom h m = dom h suc i
23 20 22 eleq12d m = suc i m dom h m suc i dom h suc i
24 eleq2 m = suc i j m j suc i
25 21 sseq2d m = suc i h j h m h j h suc i
26 24 25 imbi12d m = suc i j m h j h m j suc i h j h suc i
27 23 26 anbi12d m = suc i m dom h m j m h j h m suc i dom h suc i j suc i h j h suc i
28 peano1 ω
29 ffvelrn h : ω S ω h S
30 28 29 mpan2 h : ω S h S
31 fdm s : suc n A dom s = suc n
32 nnord n ω Ord n
33 0elsuc Ord n suc n
34 32 33 syl n ω suc n
35 peano2 n ω suc n ω
36 eleq2 dom s = suc n dom s suc n
37 eleq1 dom s = suc n dom s ω suc n ω
38 36 37 anbi12d dom s = suc n dom s dom s ω suc n suc n ω
39 38 biimprcd suc n suc n ω dom s = suc n dom s dom s ω
40 34 35 39 syl2anc n ω dom s = suc n dom s dom s ω
41 31 40 syl5com s : suc n A n ω dom s dom s ω
42 41 3ad2ant1 s : suc n A s = C k n s suc k F s k n ω dom s dom s ω
43 42 impcom n ω s : suc n A s = C k n s suc k F s k dom s dom s ω
44 43 rexlimiva n ω s : suc n A s = C k n s suc k F s k dom s dom s ω
45 44 ss2abi s | n ω s : suc n A s = C k n s suc k F s k s | dom s dom s ω
46 2 45 eqsstri S s | dom s dom s ω
47 46 sseli h S h s | dom s dom s ω
48 fvex h V
49 dmeq s = h dom s = dom h
50 49 eleq2d s = h dom s dom h
51 49 eleq1d s = h dom s ω dom h ω
52 50 51 anbi12d s = h dom s dom s ω dom h dom h ω
53 48 52 elab h s | dom s dom s ω dom h dom h ω
54 47 53 sylib h S dom h dom h ω
55 54 simpld h S dom h
56 30 55 syl h : ω S dom h
57 noel ¬ j
58 57 pm2.21i j h j h
59 56 58 jctir h : ω S dom h j h j h
60 59 adantr h : ω S k ω h suc k G h k dom h j h j h
61 ffvelrn h : ω S i ω h i S
62 61 ancoms i ω h : ω S h i S
63 62 adantrr i ω h : ω S k ω h suc k G h k h i S
64 suceq k = i suc k = suc i
65 64 fveq2d k = i h suc k = h suc i
66 2fveq3 k = i G h k = G h i
67 65 66 eleq12d k = i h suc k G h k h suc i G h i
68 67 rspcva i ω k ω h suc k G h k h suc i G h i
69 68 adantrl i ω h : ω S k ω h suc k G h k h suc i G h i
70 46 sseli h i S h i s | dom s dom s ω
71 fvex h i V
72 dmeq s = h i dom s = dom h i
73 72 eleq2d s = h i dom s dom h i
74 72 eleq1d s = h i dom s ω dom h i ω
75 73 74 anbi12d s = h i dom s dom s ω dom h i dom h i ω
76 71 75 elab h i s | dom s dom s ω dom h i dom h i ω
77 70 76 sylib h i S dom h i dom h i ω
78 77 simprd h i S dom h i ω
79 nnord dom h i ω Ord dom h i
80 ordsucelsuc Ord dom h i i dom h i suc i suc dom h i
81 78 79 80 3syl h i S i dom h i suc i suc dom h i
82 81 adantr h i S h suc i G h i i dom h i suc i suc dom h i
83 dmeq x = h i dom x = dom h i
84 suceq dom x = dom h i suc dom x = suc dom h i
85 83 84 syl x = h i suc dom x = suc dom h i
86 85 eqeq2d x = h i dom y = suc dom x dom y = suc dom h i
87 83 reseq2d x = h i y dom x = y dom h i
88 id x = h i x = h i
89 87 88 eqeq12d x = h i y dom x = x y dom h i = h i
90 86 89 anbi12d x = h i dom y = suc dom x y dom x = x dom y = suc dom h i y dom h i = h i
91 90 rabbidv x = h i y S | dom y = suc dom x y dom x = x = y S | dom y = suc dom h i y dom h i = h i
92 1 2 axdc3lem S V
93 92 rabex y S | dom y = suc dom h i y dom h i = h i V
94 91 3 93 fvmpt h i S G h i = y S | dom y = suc dom h i y dom h i = h i
95 94 eleq2d h i S h suc i G h i h suc i y S | dom y = suc dom h i y dom h i = h i
96 dmeq y = h suc i dom y = dom h suc i
97 96 eqeq1d y = h suc i dom y = suc dom h i dom h suc i = suc dom h i
98 reseq1 y = h suc i y dom h i = h suc i dom h i
99 98 eqeq1d y = h suc i y dom h i = h i h suc i dom h i = h i
100 97 99 anbi12d y = h suc i dom y = suc dom h i y dom h i = h i dom h suc i = suc dom h i h suc i dom h i = h i
101 100 elrab h suc i y S | dom y = suc dom h i y dom h i = h i h suc i S dom h suc i = suc dom h i h suc i dom h i = h i
102 95 101 bitrdi h i S h suc i G h i h suc i S dom h suc i = suc dom h i h suc i dom h i = h i
103 102 simplbda h i S h suc i G h i dom h suc i = suc dom h i h suc i dom h i = h i
104 103 simpld h i S h suc i G h i dom h suc i = suc dom h i
105 104 eleq2d h i S h suc i G h i suc i dom h suc i suc i suc dom h i
106 82 105 bitr4d h i S h suc i G h i i dom h i suc i dom h suc i
107 106 biimpd h i S h suc i G h i i dom h i suc i dom h suc i
108 103 simprd h i S h suc i G h i h suc i dom h i = h i
109 resss h suc i dom h i h suc i
110 sseq1 h suc i dom h i = h i h suc i dom h i h suc i h i h suc i
111 109 110 mpbii h suc i dom h i = h i h i h suc i
112 elsuci j suc i j i j = i
113 pm2.27 j i j i h j h i h j h i
114 sstr2 h j h i h i h suc i h j h suc i
115 113 114 syl6 j i j i h j h i h i h suc i h j h suc i
116 fveq2 j = i h j = h i
117 116 sseq1d j = i h j h suc i h i h suc i
118 117 biimprd j = i h i h suc i h j h suc i
119 118 a1d j = i j i h j h i h i h suc i h j h suc i
120 115 119 jaoi j i j = i j i h j h i h i h suc i h j h suc i
121 112 120 syl j suc i j i h j h i h i h suc i h j h suc i
122 121 com13 h i h suc i j i h j h i j suc i h j h suc i
123 108 111 122 3syl h i S h suc i G h i j i h j h i j suc i h j h suc i
124 107 123 anim12d h i S h suc i G h i i dom h i j i h j h i suc i dom h suc i j suc i h j h suc i
125 63 69 124 syl2anc i ω h : ω S k ω h suc k G h k i dom h i j i h j h i suc i dom h suc i j suc i h j h suc i
126 125 ex i ω h : ω S k ω h suc k G h k i dom h i j i h j h i suc i dom h suc i j suc i h j h suc i
127 11 19 27 60 126 finds2 m ω h : ω S k ω h suc k G h k m dom h m j m h j h m
128 127 imp m ω h : ω S k ω h suc k G h k m dom h m j m h j h m
129 128 simprd m ω h : ω S k ω h suc k G h k j m h j h m
130 129 expcom h : ω S k ω h suc k G h k m ω j m h j h m
131 130 ralrimdv h : ω S k ω h suc k G h k m ω j m h j h m
132 131 ralrimiv h : ω S k ω h suc k G h k m ω j m h j h m
133 frn h : ω S ran h S
134 ffun s : suc n A Fun s
135 134 3ad2ant1 s : suc n A s = C k n s suc k F s k Fun s
136 135 rexlimivw n ω s : suc n A s = C k n s suc k F s k Fun s
137 136 ss2abi s | n ω s : suc n A s = C k n s suc k F s k s | Fun s
138 2 137 eqsstri S s | Fun s
139 133 138 sstrdi h : ω S ran h s | Fun s
140 139 sseld h : ω S u ran h u s | Fun s
141 vex u V
142 funeq s = u Fun s Fun u
143 141 142 elab u s | Fun s Fun u
144 140 143 syl6ib h : ω S u ran h Fun u
145 144 adantr h : ω S m ω j m h j h m u ran h Fun u
146 ffn h : ω S h Fn ω
147 fvelrnb h Fn ω v ran h b ω h b = v
148 fvelrnb h Fn ω u ran h a ω h a = u
149 nnord a ω Ord a
150 nnord b ω Ord b
151 149 150 anim12i a ω b ω Ord a Ord b
152 ordtri3or Ord a Ord b a b a = b b a
153 fveq2 m = b h m = h b
154 153 sseq2d m = b h j h m h j h b
155 154 raleqbi1dv m = b j m h j h m j b h j h b
156 155 rspcv b ω m ω j m h j h m j b h j h b
157 fveq2 j = a h j = h a
158 157 sseq1d j = a h j h b h a h b
159 158 rspccv j b h j h b a b h a h b
160 156 159 syl6 b ω m ω j m h j h m a b h a h b
161 160 adantl a ω b ω m ω j m h j h m a b h a h b
162 161 3imp a ω b ω m ω j m h j h m a b h a h b
163 162 orcd a ω b ω m ω j m h j h m a b h a h b h b h a
164 163 3exp a ω b ω m ω j m h j h m a b h a h b h b h a
165 164 com3r a b a ω b ω m ω j m h j h m h a h b h b h a
166 fveq2 a = b h a = h b
167 eqimss h a = h b h a h b
168 167 orcd h a = h b h a h b h b h a
169 166 168 syl a = b h a h b h b h a
170 169 2a1d a = b a ω b ω m ω j m h j h m h a h b h b h a
171 fveq2 m = a h m = h a
172 171 sseq2d m = a h j h m h j h a
173 172 raleqbi1dv m = a j m h j h m j a h j h a
174 173 rspcv a ω m ω j m h j h m j a h j h a
175 fveq2 j = b h j = h b
176 175 sseq1d j = b h j h a h b h a
177 176 rspccv j a h j h a b a h b h a
178 174 177 syl6 a ω m ω j m h j h m b a h b h a
179 178 adantr a ω b ω m ω j m h j h m b a h b h a
180 179 3imp a ω b ω m ω j m h j h m b a h b h a
181 180 olcd a ω b ω m ω j m h j h m b a h a h b h b h a
182 181 3exp a ω b ω m ω j m h j h m b a h a h b h b h a
183 182 com3r b a a ω b ω m ω j m h j h m h a h b h b h a
184 165 170 183 3jaoi a b a = b b a a ω b ω m ω j m h j h m h a h b h b h a
185 152 184 syl Ord a Ord b a ω b ω m ω j m h j h m h a h b h b h a
186 151 185 mpcom a ω b ω m ω j m h j h m h a h b h b h a
187 sseq12 h a = u h b = v h a h b u v
188 sseq12 h b = v h a = u h b h a v u
189 188 ancoms h a = u h b = v h b h a v u
190 187 189 orbi12d h a = u h b = v h a h b h b h a u v v u
191 190 biimpcd h a h b h b h a h a = u h b = v u v v u
192 186 191 syl6 a ω b ω m ω j m h j h m h a = u h b = v u v v u
193 192 com23 a ω b ω h a = u h b = v m ω j m h j h m u v v u
194 193 exp4b a ω b ω h a = u h b = v m ω j m h j h m u v v u
195 194 com23 a ω h a = u b ω h b = v m ω j m h j h m u v v u
196 195 rexlimiv a ω h a = u b ω h b = v m ω j m h j h m u v v u
197 196 rexlimdv a ω h a = u b ω h b = v m ω j m h j h m u v v u
198 148 197 syl6bi h Fn ω u ran h b ω h b = v m ω j m h j h m u v v u
199 198 com23 h Fn ω b ω h b = v u ran h m ω j m h j h m u v v u
200 147 199 sylbid h Fn ω v ran h u ran h m ω j m h j h m u v v u
201 200 com24 h Fn ω m ω j m h j h m u ran h v ran h u v v u
202 201 imp h Fn ω m ω j m h j h m u ran h v ran h u v v u
203 202 ralrimdv h Fn ω m ω j m h j h m u ran h v ran h u v v u
204 146 203 sylan h : ω S m ω j m h j h m u ran h v ran h u v v u
205 145 204 jcad h : ω S m ω j m h j h m u ran h Fun u v ran h u v v u
206 205 ralrimiv h : ω S m ω j m h j h m u ran h Fun u v ran h u v v u
207 fununi u ran h Fun u v ran h u v v u Fun ran h
208 206 207 syl h : ω S m ω j m h j h m Fun ran h
209 132 208 syldan h : ω S k ω h suc k G h k Fun ran h
210 vex m V
211 210 eldm2 m dom ran h u m u ran h
212 eluni2 m u ran h v ran h m u v
213 210 141 opeldm m u v m dom v
214 213 a1i h : ω S m u v m dom v
215 133 46 sstrdi h : ω S ran h s | dom s dom s ω
216 ssel ran h s | dom s dom s ω v ran h v s | dom s dom s ω
217 vex v V
218 dmeq s = v dom s = dom v
219 218 eleq2d s = v dom s dom v
220 218 eleq1d s = v dom s ω dom v ω
221 219 220 anbi12d s = v dom s dom s ω dom v dom v ω
222 217 221 elab v s | dom s dom s ω dom v dom v ω
223 222 simprbi v s | dom s dom s ω dom v ω
224 216 223 syl6 ran h s | dom s dom s ω v ran h dom v ω
225 215 224 syl h : ω S v ran h dom v ω
226 214 225 anim12d h : ω S m u v v ran h m dom v dom v ω
227 elnn m dom v dom v ω m ω
228 226 227 syl6 h : ω S m u v v ran h m ω
229 228 expcomd h : ω S v ran h m u v m ω
230 229 rexlimdv h : ω S v ran h m u v m ω
231 212 230 syl5bi h : ω S m u ran h m ω
232 231 exlimdv h : ω S u m u ran h m ω
233 211 232 syl5bi h : ω S m dom ran h m ω
234 233 adantr h : ω S k ω h suc k G h k m dom ran h m ω
235 id m ω m ω
236 fnfvelrn h Fn ω m ω h m ran h
237 146 235 236 syl2anr m ω h : ω S h m ran h
238 237 adantrr m ω h : ω S k ω h suc k G h k h m ran h
239 128 simpld m ω h : ω S k ω h suc k G h k m dom h m
240 dmeq u = h m dom u = dom h m
241 240 eliuni h m ran h m dom h m m u ran h dom u
242 238 239 241 syl2anc m ω h : ω S k ω h suc k G h k m u ran h dom u
243 dmuni dom ran h = u ran h dom u
244 242 243 eleqtrrdi m ω h : ω S k ω h suc k G h k m dom ran h
245 244 expcom h : ω S k ω h suc k G h k m ω m dom ran h
246 234 245 impbid h : ω S k ω h suc k G h k m dom ran h m ω
247 246 eqrdv h : ω S k ω h suc k G h k dom ran h = ω
248 rnuni ran ran h = s ran h ran s
249 frn s : suc n A ran s A
250 249 3ad2ant1 s : suc n A s = C k n s suc k F s k ran s A
251 250 rexlimivw n ω s : suc n A s = C k n s suc k F s k ran s A
252 251 ss2abi s | n ω s : suc n A s = C k n s suc k F s k s | ran s A
253 2 252 eqsstri S s | ran s A
254 133 253 sstrdi h : ω S ran h s | ran s A
255 ssel ran h s | ran s A s ran h s s | ran s A
256 abid s s | ran s A ran s A
257 255 256 syl6ib ran h s | ran s A s ran h ran s A
258 254 257 syl h : ω S s ran h ran s A
259 258 ralrimiv h : ω S s ran h ran s A
260 iunss s ran h ran s A s ran h ran s A
261 259 260 sylibr h : ω S s ran h ran s A
262 248 261 eqsstrid h : ω S ran ran h A
263 262 adantr h : ω S k ω h suc k G h k ran ran h A
264 df-fn ran h Fn ω Fun ran h dom ran h = ω
265 df-f ran h : ω A ran h Fn ω ran ran h A
266 265 biimpri ran h Fn ω ran ran h A ran h : ω A
267 264 266 sylanbr Fun ran h dom ran h = ω ran ran h A ran h : ω A
268 209 247 263 267 syl21anc h : ω S k ω h suc k G h k ran h : ω A
269 fnfvelrn h Fn ω ω h ran h
270 146 28 269 sylancl h : ω S h ran h
271 270 adantr h : ω S k ω h suc k G h k h ran h
272 elssuni h ran h h ran h
273 271 272 syl h : ω S k ω h suc k G h k h ran h
274 56 adantr h : ω S k ω h suc k G h k dom h
275 funssfv Fun ran h h ran h dom h ran h = h
276 209 273 274 275 syl3anc h : ω S k ω h suc k G h k ran h = h
277 simp2 s : suc n A s = C k n s suc k F s k s = C
278 277 rexlimivw n ω s : suc n A s = C k n s suc k F s k s = C
279 278 ss2abi s | n ω s : suc n A s = C k n s suc k F s k s | s = C
280 2 279 eqsstri S s | s = C
281 133 280 sstrdi h : ω S ran h s | s = C
282 ssel ran h s | s = C h ran h h s | s = C
283 fveq1 s = h s = h
284 283 eqeq1d s = h s = C h = C
285 48 284 elab h s | s = C h = C
286 282 285 syl6ib ran h s | s = C h ran h h = C
287 281 286 syl h : ω S h ran h h = C
288 287 adantr h : ω S k ω h suc k G h k h ran h h = C
289 271 288 mpd h : ω S k ω h suc k G h k h = C
290 276 289 eqtrd h : ω S k ω h suc k G h k ran h = C
291 nfv k h : ω S
292 nfra1 k k ω h suc k G h k
293 291 292 nfan k h : ω S k ω h suc k G h k
294 133 ad2antrr h : ω S k ω h suc k G h k k ω ran h S
295 peano2 k ω suc k ω
296 fnfvelrn h Fn ω suc k ω h suc k ran h
297 146 295 296 syl2an h : ω S k ω h suc k ran h
298 297 adantlr h : ω S k ω h suc k G h k k ω h suc k ran h
299 239 expcom h : ω S k ω h suc k G h k m ω m dom h m
300 299 ralrimiv h : ω S k ω h suc k G h k m ω m dom h m
301 id m = suc k m = suc k
302 fveq2 m = suc k h m = h suc k
303 302 dmeqd m = suc k dom h m = dom h suc k
304 301 303 eleq12d m = suc k m dom h m suc k dom h suc k
305 304 rspcv suc k ω m ω m dom h m suc k dom h suc k
306 295 305 syl k ω m ω m dom h m suc k dom h suc k
307 300 306 mpan9 h : ω S k ω h suc k G h k k ω suc k dom h suc k
308 eleq2 dom s = suc n suc k dom s suc k suc n
309 308 biimpa dom s = suc n suc k dom s suc k suc n
310 31 309 sylan s : suc n A suc k dom s suc k suc n
311 ordsucelsuc Ord n k n suc k suc n
312 32 311 syl n ω k n suc k suc n
313 312 biimprd n ω suc k suc n k n
314 rsp k n s suc k F s k k n s suc k F s k
315 313 314 syl9r k n s suc k F s k n ω suc k suc n s suc k F s k
316 315 com13 suc k suc n n ω k n s suc k F s k s suc k F s k
317 310 316 syl s : suc n A suc k dom s n ω k n s suc k F s k s suc k F s k
318 317 ex s : suc n A suc k dom s n ω k n s suc k F s k s suc k F s k
319 318 com24 s : suc n A k n s suc k F s k n ω suc k dom s s suc k F s k
320 319 imp s : suc n A k n s suc k F s k n ω suc k dom s s suc k F s k
321 320 3adant2 s : suc n A s = C k n s suc k F s k n ω suc k dom s s suc k F s k
322 321 impcom n ω s : suc n A s = C k n s suc k F s k suc k dom s s suc k F s k
323 322 rexlimiva n ω s : suc n A s = C k n s suc k F s k suc k dom s s suc k F s k
324 323 ss2abi s | n ω s : suc n A s = C k n s suc k F s k s | suc k dom s s suc k F s k
325 2 324 eqsstri S s | suc k dom s s suc k F s k
326 sstr ran h S S s | suc k dom s s suc k F s k ran h s | suc k dom s s suc k F s k
327 325 326 mpan2 ran h S ran h s | suc k dom s s suc k F s k
328 327 sseld ran h S h suc k ran h h suc k s | suc k dom s s suc k F s k
329 fvex h suc k V
330 dmeq s = h suc k dom s = dom h suc k
331 330 eleq2d s = h suc k suc k dom s suc k dom h suc k
332 fveq1 s = h suc k s suc k = h suc k suc k
333 fveq1 s = h suc k s k = h suc k k
334 333 fveq2d s = h suc k F s k = F h suc k k
335 332 334 eleq12d s = h suc k s suc k F s k h suc k suc k F h suc k k
336 331 335 imbi12d s = h suc k suc k dom s s suc k F s k suc k dom h suc k h suc k suc k F h suc k k
337 329 336 elab h suc k s | suc k dom s s suc k F s k suc k dom h suc k h suc k suc k F h suc k k
338 328 337 syl6ib ran h S h suc k ran h suc k dom h suc k h suc k suc k F h suc k k
339 294 298 307 338 syl3c h : ω S k ω h suc k G h k k ω h suc k suc k F h suc k k
340 209 adantr h : ω S k ω h suc k G h k k ω Fun ran h
341 elssuni h suc k ran h h suc k ran h
342 297 341 syl h : ω S k ω h suc k ran h
343 342 adantlr h : ω S k ω h suc k G h k k ω h suc k ran h
344 funssfv Fun ran h h suc k ran h suc k dom h suc k ran h suc k = h suc k suc k
345 340 343 307 344 syl3anc h : ω S k ω h suc k G h k k ω ran h suc k = h suc k suc k
346 215 sseld h : ω S h suc k ran h h suc k s | dom s dom s ω
347 330 eleq2d s = h suc k dom s dom h suc k
348 330 eleq1d s = h suc k dom s ω dom h suc k ω
349 347 348 anbi12d s = h suc k dom s dom s ω dom h suc k dom h suc k ω
350 329 349 elab h suc k s | dom s dom s ω dom h suc k dom h suc k ω
351 346 350 syl6ib h : ω S h suc k ran h dom h suc k dom h suc k ω
352 351 adantr h : ω S k ω h suc k ran h dom h suc k dom h suc k ω
353 297 352 mpd h : ω S k ω dom h suc k dom h suc k ω
354 353 simprd h : ω S k ω dom h suc k ω
355 nnord dom h suc k ω Ord dom h suc k
356 ordtr Ord dom h suc k Tr dom h suc k
357 trsuc Tr dom h suc k suc k dom h suc k k dom h suc k
358 357 ex Tr dom h suc k suc k dom h suc k k dom h suc k
359 354 355 356 358 4syl h : ω S k ω suc k dom h suc k k dom h suc k
360 359 adantlr h : ω S k ω h suc k G h k k ω suc k dom h suc k k dom h suc k
361 307 360 mpd h : ω S k ω h suc k G h k k ω k dom h suc k
362 funssfv Fun ran h h suc k ran h k dom h suc k ran h k = h suc k k
363 340 343 361 362 syl3anc h : ω S k ω h suc k G h k k ω ran h k = h suc k k
364 simpl ran h suc k = h suc k suc k ran h k = h suc k k ran h suc k = h suc k suc k
365 simpr ran h suc k = h suc k suc k ran h k = h suc k k ran h k = h suc k k
366 365 fveq2d ran h suc k = h suc k suc k ran h k = h suc k k F ran h k = F h suc k k
367 364 366 eleq12d ran h suc k = h suc k suc k ran h k = h suc k k ran h suc k F ran h k h suc k suc k F h suc k k
368 345 363 367 syl2anc h : ω S k ω h suc k G h k k ω ran h suc k F ran h k h suc k suc k F h suc k k
369 339 368 mpbird h : ω S k ω h suc k G h k k ω ran h suc k F ran h k
370 369 ex h : ω S k ω h suc k G h k k ω ran h suc k F ran h k
371 293 370 ralrimi h : ω S k ω h suc k G h k k ω ran h suc k F ran h k
372 vex h V
373 372 rnex ran h V
374 373 uniex ran h V
375 feq1 g = ran h g : ω A ran h : ω A
376 fveq1 g = ran h g = ran h
377 376 eqeq1d g = ran h g = C ran h = C
378 fveq1 g = ran h g suc k = ran h suc k
379 fveq1 g = ran h g k = ran h k
380 379 fveq2d g = ran h F g k = F ran h k
381 378 380 eleq12d g = ran h g suc k F g k ran h suc k F ran h k
382 381 ralbidv g = ran h k ω g suc k F g k k ω ran h suc k F ran h k
383 375 377 382 3anbi123d g = ran h g : ω A g = C k ω g suc k F g k ran h : ω A ran h = C k ω ran h suc k F ran h k
384 374 383 spcev ran h : ω A ran h = C k ω ran h suc k F ran h k g g : ω A g = C k ω g suc k F g k
385 268 290 371 384 syl3anc h : ω S k ω h suc k G h k g g : ω A g = C k ω g suc k F g k
386 385 exlimiv h h : ω S k ω h suc k G h k g g : ω A g = C k ω g suc k F g k