Metamath Proof Explorer


Theorem axdc3lem3

Description: Simple substitution lemma for axdc3 . (Contributed by Mario Carneiro, 27-Jan-2013)

Ref Expression
Hypotheses axdc3lem3.1 A V
axdc3lem3.2 S = s | n ω s : suc n A s = C k n s suc k F s k
axdc3lem3.3 B V
Assertion axdc3lem3 B S m ω B : suc m A B = C k m B suc k F B k

Proof

Step Hyp Ref Expression
1 axdc3lem3.1 A V
2 axdc3lem3.2 S = s | n ω s : suc n A s = C k n s suc k F s k
3 axdc3lem3.3 B V
4 2 eleq2i B S B s | n ω s : suc n A s = C k n s suc k F s k
5 feq1 s = B s : suc n A B : suc n A
6 fveq1 s = B s = B
7 6 eqeq1d s = B s = C B = C
8 fveq1 s = B s suc k = B suc k
9 fveq1 s = B s k = B k
10 9 fveq2d s = B F s k = F B k
11 8 10 eleq12d s = B s suc k F s k B suc k F B k
12 11 ralbidv s = B k n s suc k F s k k n B suc k F B k
13 5 7 12 3anbi123d s = B s : suc n A s = C k n s suc k F s k B : suc n A B = C k n B suc k F B k
14 13 rexbidv s = B n ω s : suc n A s = C k n s suc k F s k n ω B : suc n A B = C k n B suc k F B k
15 3 14 elab B s | n ω s : suc n A s = C k n s suc k F s k n ω B : suc n A B = C k n B suc k F B k
16 suceq n = m suc n = suc m
17 16 feq2d n = m B : suc n A B : suc m A
18 raleq n = m k n B suc k F B k k m B suc k F B k
19 17 18 3anbi13d n = m B : suc n A B = C k n B suc k F B k B : suc m A B = C k m B suc k F B k
20 19 cbvrexvw n ω B : suc n A B = C k n B suc k F B k m ω B : suc m A B = C k m B suc k F B k
21 4 15 20 3bitri B S m ω B : suc m A B = C k m B suc k F B k