Step |
Hyp |
Ref |
Expression |
1 |
|
axdc3lem4.1 |
|
2 |
|
axdc3lem4.2 |
|
3 |
|
axdc3lem4.3 |
|
4 |
|
peano1 |
|
5 |
|
eqid |
|
6 |
|
fsng |
|
7 |
4 6
|
mpan |
|
8 |
5 7
|
mpbiri |
|
9 |
|
snssi |
|
10 |
8 9
|
fssd |
|
11 |
|
suc0 |
|
12 |
11
|
feq2i |
|
13 |
10 12
|
sylibr |
|
14 |
|
fvsng |
|
15 |
4 14
|
mpan |
|
16 |
|
ral0 |
|
17 |
16
|
a1i |
|
18 |
13 15 17
|
3jca |
|
19 |
|
suceq |
|
20 |
19
|
feq2d |
|
21 |
|
raleq |
|
22 |
20 21
|
3anbi13d |
|
23 |
22
|
rspcev |
|
24 |
4 18 23
|
sylancr |
|
25 |
|
snex |
|
26 |
1 2 25
|
axdc3lem3 |
|
27 |
24 26
|
sylibr |
|
28 |
27
|
ne0d |
|
29 |
1 2
|
axdc3lem |
|
30 |
|
ssrab2 |
|
31 |
29 30
|
elpwi2 |
|
32 |
31
|
a1i |
|
33 |
|
vex |
|
34 |
1 2 33
|
axdc3lem3 |
|
35 |
|
simp2 |
|
36 |
|
vex |
|
37 |
36
|
sucid |
|
38 |
|
ffvelrn |
|
39 |
37 38
|
mpan2 |
|
40 |
|
ffvelrn |
|
41 |
39 40
|
sylan2 |
|
42 |
|
eldifn |
|
43 |
|
fvex |
|
44 |
43
|
elsn |
|
45 |
44
|
necon3bbii |
|
46 |
|
n0 |
|
47 |
45 46
|
bitri |
|
48 |
42 47
|
sylib |
|
49 |
41 48
|
syl |
|
50 |
|
simp32 |
|
51 |
|
eldifi |
|
52 |
|
elelpwi |
|
53 |
52
|
expcom |
|
54 |
41 51 53
|
3syl |
|
55 |
|
peano2 |
|
56 |
55
|
3ad2ant3 |
|
57 |
56
|
3ad2ant1 |
|
58 |
|
simplr |
|
59 |
33
|
dmex |
|
60 |
|
vex |
|
61 |
|
eqid |
|
62 |
|
fsng |
|
63 |
61 62
|
mpbiri |
|
64 |
59 60 63
|
mp2an |
|
65 |
|
simpr |
|
66 |
65
|
snssd |
|
67 |
|
fss |
|
68 |
64 66 67
|
sylancr |
|
69 |
|
fdm |
|
70 |
55
|
adantr |
|
71 |
|
eleq1 |
|
72 |
71
|
adantl |
|
73 |
70 72
|
mpbird |
|
74 |
|
nnord |
|
75 |
|
ordirr |
|
76 |
73 74 75
|
3syl |
|
77 |
|
eleq2 |
|
78 |
77
|
adantl |
|
79 |
76 78
|
mtbid |
|
80 |
|
disjsn |
|
81 |
79 80
|
sylibr |
|
82 |
69 81
|
sylan2 |
|
83 |
82
|
adantr |
|
84 |
58 68 83
|
fun2d |
|
85 |
|
sneq |
|
86 |
85
|
uneq2d |
|
87 |
|
df-suc |
|
88 |
86 87
|
eqtr4di |
|
89 |
69 88
|
syl |
|
90 |
89
|
ad2antlr |
|
91 |
90
|
feq2d |
|
92 |
84 91
|
mpbid |
|
93 |
92
|
ex |
|
94 |
93
|
adantrd |
|
95 |
94
|
a1d |
|
96 |
95
|
ancoms |
|
97 |
96
|
3adant1 |
|
98 |
97
|
3imp |
|
99 |
|
ffun |
|
100 |
99
|
adantl |
|
101 |
59 60
|
funsn |
|
102 |
100 101
|
jctir |
|
103 |
60
|
dmsnop |
|
104 |
103
|
ineq2i |
|
105 |
|
disjsn |
|
106 |
76 105
|
sylibr |
|
107 |
104 106
|
eqtrid |
|
108 |
69 107
|
sylan2 |
|
109 |
|
funun |
|
110 |
102 108 109
|
syl2anc |
|
111 |
|
ssun1 |
|
112 |
111
|
a1i |
|
113 |
|
nnord |
|
114 |
|
0elsuc |
|
115 |
113 114
|
syl |
|
116 |
115
|
adantr |
|
117 |
69
|
eleq2d |
|
118 |
117
|
adantl |
|
119 |
116 118
|
mpbird |
|
120 |
|
funssfv |
|
121 |
110 112 119 120
|
syl3anc |
|
122 |
121
|
eqeq1d |
|
123 |
122
|
ancoms |
|
124 |
123
|
3adant1 |
|
125 |
124
|
biimpar |
|
126 |
125
|
adantrl |
|
127 |
126
|
3adant2 |
|
128 |
|
nfra1 |
|
129 |
|
nfv |
|
130 |
|
nfv |
|
131 |
128 129 130
|
nf3an |
|
132 |
|
nfv |
|
133 |
|
nfv |
|
134 |
131 132 133
|
nf3an |
|
135 |
|
simplr |
|
136 |
|
elsuci |
|
137 |
|
rsp |
|
138 |
137
|
impcom |
|
139 |
138
|
ad2ant2lr |
|
140 |
139
|
3adant3 |
|
141 |
110
|
adantlr |
|
142 |
111
|
a1i |
|
143 |
|
ordsucelsuc |
|
144 |
113 143
|
syl |
|
145 |
144
|
biimpa |
|
146 |
|
eleq2 |
|
147 |
146
|
biimparc |
|
148 |
145 69 147
|
syl2an |
|
149 |
|
funssfv |
|
150 |
141 142 148 149
|
syl3anc |
|
151 |
150
|
3adant2 |
|
152 |
110
|
3adant2 |
|
153 |
111
|
a1i |
|
154 |
|
eleq2 |
|
155 |
154
|
biimparc |
|
156 |
69 155
|
sylan2 |
|
157 |
156
|
3adant1 |
|
158 |
|
funssfv |
|
159 |
152 153 157 158
|
syl3anc |
|
160 |
159
|
3adant1r |
|
161 |
160
|
fveq2d |
|
162 |
151 161
|
eleq12d |
|
163 |
162
|
3adant2l |
|
164 |
140 163
|
mpbird |
|
165 |
164
|
a1d |
|
166 |
165
|
3expib |
|
167 |
166
|
expcom |
|
168 |
110
|
3adant1 |
|
169 |
|
ssun2 |
|
170 |
169
|
a1i |
|
171 |
|
suceq |
|
172 |
171
|
eqeq2d |
|
173 |
172
|
biimpar |
|
174 |
59
|
snid |
|
175 |
174 103
|
eleqtrri |
|
176 |
173 175
|
eqeltrrdi |
|
177 |
69 176
|
sylan2 |
|
178 |
177
|
3adant2 |
|
179 |
|
funssfv |
|
180 |
168 170 178 179
|
syl3anc |
|
181 |
173
|
3adant2 |
|
182 |
|
fveq2 |
|
183 |
59 60
|
fvsn |
|
184 |
182 183
|
eqtr3di |
|
185 |
181 184
|
syl |
|
186 |
69 185
|
syl3an3 |
|
187 |
180 186
|
eqtrd |
|
188 |
187
|
3expa |
|
189 |
188
|
3adant2 |
|
190 |
159
|
3adant1l |
|
191 |
|
fveq2 |
|
192 |
191
|
adantr |
|
193 |
192
|
3ad2ant1 |
|
194 |
190 193
|
eqtrd |
|
195 |
194
|
fveq2d |
|
196 |
189 195
|
eleq12d |
|
197 |
196
|
3adant2l |
|
198 |
197
|
biimprd |
|
199 |
198
|
3expib |
|
200 |
199
|
ex |
|
201 |
167 200
|
jaoi |
|
202 |
136 201
|
syl |
|
203 |
202
|
com3r |
|
204 |
135 203
|
mpd |
|
205 |
204
|
ex |
|
206 |
205
|
expcom |
|
207 |
206
|
3impd |
|
208 |
207
|
impd |
|
209 |
208
|
com12 |
|
210 |
209
|
3adant3 |
|
211 |
134 210
|
ralrimi |
|
212 |
|
suceq |
|
213 |
212
|
feq2d |
|
214 |
|
raleq |
|
215 |
213 214
|
3anbi13d |
|
216 |
215
|
rspcev |
|
217 |
57 98 127 211 216
|
syl13anc |
|
218 |
|
snex |
|
219 |
33 218
|
unex |
|
220 |
1 2 219
|
axdc3lem3 |
|
221 |
217 220
|
sylibr |
|
222 |
221
|
3coml |
|
223 |
222
|
3exp |
|
224 |
223
|
expd |
|
225 |
54 224
|
sylcom |
|
226 |
225
|
3impd |
|
227 |
226
|
ex |
|
228 |
227
|
com23 |
|
229 |
50 228
|
mpdi |
|
230 |
229
|
imp |
|
231 |
|
resundir |
|
232 |
|
frel |
|
233 |
|
resdm |
|
234 |
232 233
|
syl |
|
235 |
234
|
adantl |
|
236 |
69 73
|
sylan2 |
|
237 |
74 75
|
syl |
|
238 |
|
incom |
|
239 |
238
|
eqeq1i |
|
240 |
59 60
|
fnsn |
|
241 |
|
fnresdisj |
|
242 |
240 241
|
ax-mp |
|
243 |
239 242 105
|
3bitr3ri |
|
244 |
237 243
|
sylib |
|
245 |
236 244
|
syl |
|
246 |
235 245
|
uneq12d |
|
247 |
|
un0 |
|
248 |
246 247
|
eqtrdi |
|
249 |
231 248
|
eqtrid |
|
250 |
249
|
ancoms |
|
251 |
250
|
3adant1 |
|
252 |
251
|
3ad2ant3 |
|
253 |
252
|
adantl |
|
254 |
103
|
uneq2i |
|
255 |
|
dmun |
|
256 |
|
df-suc |
|
257 |
254 255 256
|
3eqtr4i |
|
258 |
253 257
|
jctil |
|
259 |
|
dmeq |
|
260 |
259
|
eqeq1d |
|
261 |
|
reseq1 |
|
262 |
261
|
eqeq1d |
|
263 |
260 262
|
anbi12d |
|
264 |
263
|
rspcev |
|
265 |
230 258 264
|
syl2anc |
|
266 |
265
|
3exp2 |
|
267 |
266
|
exlimdv |
|
268 |
267
|
adantr |
|
269 |
49 268
|
mpd |
|
270 |
269
|
com3r |
|
271 |
35 270
|
mpan2d |
|
272 |
271
|
com3r |
|
273 |
272
|
3expd |
|
274 |
273
|
com3r |
|
275 |
274
|
3imp |
|
276 |
275
|
com12 |
|
277 |
276
|
rexlimiv |
|
278 |
34 277
|
sylbi |
|
279 |
278
|
impcom |
|
280 |
|
rabn0 |
|
281 |
279 280
|
sylibr |
|
282 |
29
|
rabex |
|
283 |
282
|
elsn |
|
284 |
283
|
necon3bbii |
|
285 |
281 284
|
sylibr |
|
286 |
32 285
|
eldifd |
|
287 |
286 3
|
fmptd |
|
288 |
29
|
axdc2 |
|
289 |
28 287 288
|
syl2an |
|
290 |
1 2 3
|
axdc3lem2 |
|
291 |
289 290
|
syl |
|