Metamath Proof Explorer


Theorem axdc3lem4

Description: Lemma for axdc3 . We have constructed a "candidate set" S , which consists of all finite sequences s that satisfy our property of interest, namely s ( x + 1 ) e. F ( s ( x ) ) on its domain, but with the added constraint that s ( 0 ) = C . These sets are possible "initial segments" of theinfinite sequence satisfying these constraints, but we can leverage the standard ax-dc (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely ( hn ) : m --> A (for some integer m ). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that S is nonempty, and that G always maps to a nonempty subset of S , so that we can apply axdc2 . See axdc3lem2 for the rest of the proof. (Contributed by Mario Carneiro, 27-Jan-2013)

Ref Expression
Hypotheses axdc3lem4.1 A V
axdc3lem4.2 S = s | n ω s : suc n A s = C k n s suc k F s k
axdc3lem4.3 G = x S y S | dom y = suc dom x y dom x = x
Assertion axdc3lem4 C A F : A 𝒫 A g g : ω A g = C k ω g suc k F g k

Proof

Step Hyp Ref Expression
1 axdc3lem4.1 A V
2 axdc3lem4.2 S = s | n ω s : suc n A s = C k n s suc k F s k
3 axdc3lem4.3 G = x S y S | dom y = suc dom x y dom x = x
4 peano1 ω
5 eqid C = C
6 fsng ω C A C : C C = C
7 4 6 mpan C A C : C C = C
8 5 7 mpbiri C A C : C
9 snssi C A C A
10 8 9 fssd C A C : A
11 suc0 suc =
12 11 feq2i C : suc A C : A
13 10 12 sylibr C A C : suc A
14 fvsng ω C A C = C
15 4 14 mpan C A C = C
16 ral0 k C suc k F C k
17 16 a1i C A k C suc k F C k
18 13 15 17 3jca C A C : suc A C = C k C suc k F C k
19 suceq m = suc m = suc
20 19 feq2d m = C : suc m A C : suc A
21 raleq m = k m C suc k F C k k C suc k F C k
22 20 21 3anbi13d m = C : suc m A C = C k m C suc k F C k C : suc A C = C k C suc k F C k
23 22 rspcev ω C : suc A C = C k C suc k F C k m ω C : suc m A C = C k m C suc k F C k
24 4 18 23 sylancr C A m ω C : suc m A C = C k m C suc k F C k
25 snex C V
26 1 2 25 axdc3lem3 C S m ω C : suc m A C = C k m C suc k F C k
27 24 26 sylibr C A C S
28 27 ne0d C A S
29 1 2 axdc3lem S V
30 ssrab2 y S | dom y = suc dom x y dom x = x S
31 29 30 elpwi2 y S | dom y = suc dom x y dom x = x 𝒫 S
32 31 a1i F : A 𝒫 A x S y S | dom y = suc dom x y dom x = x 𝒫 S
33 vex x V
34 1 2 33 axdc3lem3 x S m ω x : suc m A x = C k m x suc k F x k
35 simp2 k m x suc k F x k x : suc m A m ω x : suc m A
36 vex m V
37 36 sucid m suc m
38 ffvelrn x : suc m A m suc m x m A
39 37 38 mpan2 x : suc m A x m A
40 ffvelrn F : A 𝒫 A x m A F x m 𝒫 A
41 39 40 sylan2 F : A 𝒫 A x : suc m A F x m 𝒫 A
42 eldifn F x m 𝒫 A ¬ F x m
43 fvex F x m V
44 43 elsn F x m F x m =
45 44 necon3bbii ¬ F x m F x m
46 n0 F x m z z F x m
47 45 46 bitri ¬ F x m z z F x m
48 42 47 sylib F x m 𝒫 A z z F x m
49 41 48 syl F : A 𝒫 A x : suc m A z z F x m
50 simp32 z F x m x = C k m x suc k F x k x : suc m A m ω x : suc m A
51 eldifi F x m 𝒫 A F x m 𝒫 A
52 elelpwi z F x m F x m 𝒫 A z A
53 52 expcom F x m 𝒫 A z F x m z A
54 41 51 53 3syl F : A 𝒫 A x : suc m A z F x m z A
55 peano2 m ω suc m ω
56 55 3ad2ant3 k m x suc k F x k x : suc m A m ω suc m ω
57 56 3ad2ant1 k m x suc k F x k x : suc m A m ω z F x m z A x = C suc m ω
58 simplr m ω x : suc m A z A x : suc m A
59 33 dmex dom x V
60 vex z V
61 eqid dom x z = dom x z
62 fsng dom x V z V dom x z : dom x z dom x z = dom x z
63 61 62 mpbiri dom x V z V dom x z : dom x z
64 59 60 63 mp2an dom x z : dom x z
65 simpr m ω x : suc m A z A z A
66 65 snssd m ω x : suc m A z A z A
67 fss dom x z : dom x z z A dom x z : dom x A
68 64 66 67 sylancr m ω x : suc m A z A dom x z : dom x A
69 fdm x : suc m A dom x = suc m
70 55 adantr m ω dom x = suc m suc m ω
71 eleq1 dom x = suc m dom x ω suc m ω
72 71 adantl m ω dom x = suc m dom x ω suc m ω
73 70 72 mpbird m ω dom x = suc m dom x ω
74 nnord dom x ω Ord dom x
75 ordirr Ord dom x ¬ dom x dom x
76 73 74 75 3syl m ω dom x = suc m ¬ dom x dom x
77 eleq2 dom x = suc m dom x dom x dom x suc m
78 77 adantl m ω dom x = suc m dom x dom x dom x suc m
79 76 78 mtbid m ω dom x = suc m ¬ dom x suc m
80 disjsn suc m dom x = ¬ dom x suc m
81 79 80 sylibr m ω dom x = suc m suc m dom x =
82 69 81 sylan2 m ω x : suc m A suc m dom x =
83 82 adantr m ω x : suc m A z A suc m dom x =
84 58 68 83 fun2d m ω x : suc m A z A x dom x z : suc m dom x A
85 sneq dom x = suc m dom x = suc m
86 85 uneq2d dom x = suc m suc m dom x = suc m suc m
87 df-suc suc suc m = suc m suc m
88 86 87 eqtr4di dom x = suc m suc m dom x = suc suc m
89 69 88 syl x : suc m A suc m dom x = suc suc m
90 89 ad2antlr m ω x : suc m A z A suc m dom x = suc suc m
91 90 feq2d m ω x : suc m A z A x dom x z : suc m dom x A x dom x z : suc suc m A
92 84 91 mpbid m ω x : suc m A z A x dom x z : suc suc m A
93 92 ex m ω x : suc m A z A x dom x z : suc suc m A
94 93 adantrd m ω x : suc m A z A x = C x dom x z : suc suc m A
95 94 a1d m ω x : suc m A z F x m z A x = C x dom x z : suc suc m A
96 95 ancoms x : suc m A m ω z F x m z A x = C x dom x z : suc suc m A
97 96 3adant1 k m x suc k F x k x : suc m A m ω z F x m z A x = C x dom x z : suc suc m A
98 97 3imp k m x suc k F x k x : suc m A m ω z F x m z A x = C x dom x z : suc suc m A
99 ffun x : suc m A Fun x
100 99 adantl m ω x : suc m A Fun x
101 59 60 funsn Fun dom x z
102 100 101 jctir m ω x : suc m A Fun x Fun dom x z
103 60 dmsnop dom dom x z = dom x
104 103 ineq2i dom x dom dom x z = dom x dom x
105 disjsn dom x dom x = ¬ dom x dom x
106 76 105 sylibr m ω dom x = suc m dom x dom x =
107 104 106 eqtrid m ω dom x = suc m dom x dom dom x z =
108 69 107 sylan2 m ω x : suc m A dom x dom dom x z =
109 funun Fun x Fun dom x z dom x dom dom x z = Fun x dom x z
110 102 108 109 syl2anc m ω x : suc m A Fun x dom x z
111 ssun1 x x dom x z
112 111 a1i m ω x : suc m A x x dom x z
113 nnord m ω Ord m
114 0elsuc Ord m suc m
115 113 114 syl m ω suc m
116 115 adantr m ω x : suc m A suc m
117 69 eleq2d x : suc m A dom x suc m
118 117 adantl m ω x : suc m A dom x suc m
119 116 118 mpbird m ω x : suc m A dom x
120 funssfv Fun x dom x z x x dom x z dom x x dom x z = x
121 110 112 119 120 syl3anc m ω x : suc m A x dom x z = x
122 121 eqeq1d m ω x : suc m A x dom x z = C x = C
123 122 ancoms x : suc m A m ω x dom x z = C x = C
124 123 3adant1 k m x suc k F x k x : suc m A m ω x dom x z = C x = C
125 124 biimpar k m x suc k F x k x : suc m A m ω x = C x dom x z = C
126 125 adantrl k m x suc k F x k x : suc m A m ω z A x = C x dom x z = C
127 126 3adant2 k m x suc k F x k x : suc m A m ω z F x m z A x = C x dom x z = C
128 nfra1 k k m x suc k F x k
129 nfv k x : suc m A
130 nfv k m ω
131 128 129 130 nf3an k k m x suc k F x k x : suc m A m ω
132 nfv k z F x m
133 nfv k z A x = C
134 131 132 133 nf3an k k m x suc k F x k x : suc m A m ω z F x m z A x = C
135 simplr k m x suc k F x k k suc m x : suc m A k suc m
136 elsuci k suc m k m k = m
137 rsp k m x suc k F x k k m x suc k F x k
138 137 impcom k m k m x suc k F x k x suc k F x k
139 138 ad2ant2lr m ω k m k m x suc k F x k k suc m x suc k F x k
140 139 3adant3 m ω k m k m x suc k F x k k suc m x : suc m A x suc k F x k
141 110 adantlr m ω k m x : suc m A Fun x dom x z
142 111 a1i m ω k m x : suc m A x x dom x z
143 ordsucelsuc Ord m k m suc k suc m
144 113 143 syl m ω k m suc k suc m
145 144 biimpa m ω k m suc k suc m
146 eleq2 dom x = suc m suc k dom x suc k suc m
147 146 biimparc suc k suc m dom x = suc m suc k dom x
148 145 69 147 syl2an m ω k m x : suc m A suc k dom x
149 funssfv Fun x dom x z x x dom x z suc k dom x x dom x z suc k = x suc k
150 141 142 148 149 syl3anc m ω k m x : suc m A x dom x z suc k = x suc k
151 150 3adant2 m ω k m k suc m x : suc m A x dom x z suc k = x suc k
152 110 3adant2 m ω k suc m x : suc m A Fun x dom x z
153 111 a1i m ω k suc m x : suc m A x x dom x z
154 eleq2 dom x = suc m k dom x k suc m
155 154 biimparc k suc m dom x = suc m k dom x
156 69 155 sylan2 k suc m x : suc m A k dom x
157 156 3adant1 m ω k suc m x : suc m A k dom x
158 funssfv Fun x dom x z x x dom x z k dom x x dom x z k = x k
159 152 153 157 158 syl3anc m ω k suc m x : suc m A x dom x z k = x k
160 159 3adant1r m ω k m k suc m x : suc m A x dom x z k = x k
161 160 fveq2d m ω k m k suc m x : suc m A F x dom x z k = F x k
162 151 161 eleq12d m ω k m k suc m x : suc m A x dom x z suc k F x dom x z k x suc k F x k
163 162 3adant2l m ω k m k m x suc k F x k k suc m x : suc m A x dom x z suc k F x dom x z k x suc k F x k
164 140 163 mpbird m ω k m k m x suc k F x k k suc m x : suc m A x dom x z suc k F x dom x z k
165 164 a1d m ω k m k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
166 165 3expib m ω k m k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
167 166 expcom k m m ω k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
168 110 3adant1 k = m m ω x : suc m A Fun x dom x z
169 ssun2 dom x z x dom x z
170 169 a1i k = m m ω x : suc m A dom x z x dom x z
171 suceq k = m suc k = suc m
172 171 eqeq2d k = m dom x = suc k dom x = suc m
173 172 biimpar k = m dom x = suc m dom x = suc k
174 59 snid dom x dom x
175 174 103 eleqtrri dom x dom dom x z
176 173 175 eqeltrrdi k = m dom x = suc m suc k dom dom x z
177 69 176 sylan2 k = m x : suc m A suc k dom dom x z
178 177 3adant2 k = m m ω x : suc m A suc k dom dom x z
179 funssfv Fun x dom x z dom x z x dom x z suc k dom dom x z x dom x z suc k = dom x z suc k
180 168 170 178 179 syl3anc k = m m ω x : suc m A x dom x z suc k = dom x z suc k
181 173 3adant2 k = m m ω dom x = suc m dom x = suc k
182 fveq2 dom x = suc k dom x z dom x = dom x z suc k
183 59 60 fvsn dom x z dom x = z
184 182 183 eqtr3di dom x = suc k dom x z suc k = z
185 181 184 syl k = m m ω dom x = suc m dom x z suc k = z
186 69 185 syl3an3 k = m m ω x : suc m A dom x z suc k = z
187 180 186 eqtrd k = m m ω x : suc m A x dom x z suc k = z
188 187 3expa k = m m ω x : suc m A x dom x z suc k = z
189 188 3adant2 k = m m ω k suc m x : suc m A x dom x z suc k = z
190 159 3adant1l k = m m ω k suc m x : suc m A x dom x z k = x k
191 fveq2 k = m x k = x m
192 191 adantr k = m m ω x k = x m
193 192 3ad2ant1 k = m m ω k suc m x : suc m A x k = x m
194 190 193 eqtrd k = m m ω k suc m x : suc m A x dom x z k = x m
195 194 fveq2d k = m m ω k suc m x : suc m A F x dom x z k = F x m
196 189 195 eleq12d k = m m ω k suc m x : suc m A x dom x z suc k F x dom x z k z F x m
197 196 3adant2l k = m m ω k m x suc k F x k k suc m x : suc m A x dom x z suc k F x dom x z k z F x m
198 197 biimprd k = m m ω k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
199 198 3expib k = m m ω k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
200 199 ex k = m m ω k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
201 167 200 jaoi k m k = m m ω k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
202 136 201 syl k suc m m ω k m x suc k F x k k suc m x : suc m A z F x m x dom x z suc k F x dom x z k
203 202 com3r k m x suc k F x k k suc m x : suc m A k suc m m ω z F x m x dom x z suc k F x dom x z k
204 135 203 mpd k m x suc k F x k k suc m x : suc m A m ω z F x m x dom x z suc k F x dom x z k
205 204 ex k m x suc k F x k k suc m x : suc m A m ω z F x m x dom x z suc k F x dom x z k
206 205 expcom k suc m k m x suc k F x k x : suc m A m ω z F x m x dom x z suc k F x dom x z k
207 206 3impd k suc m k m x suc k F x k x : suc m A m ω z F x m x dom x z suc k F x dom x z k
208 207 impd k suc m k m x suc k F x k x : suc m A m ω z F x m x dom x z suc k F x dom x z k
209 208 com12 k m x suc k F x k x : suc m A m ω z F x m k suc m x dom x z suc k F x dom x z k
210 209 3adant3 k m x suc k F x k x : suc m A m ω z F x m z A x = C k suc m x dom x z suc k F x dom x z k
211 134 210 ralrimi k m x suc k F x k x : suc m A m ω z F x m z A x = C k suc m x dom x z suc k F x dom x z k
212 suceq p = suc m suc p = suc suc m
213 212 feq2d p = suc m x dom x z : suc p A x dom x z : suc suc m A
214 raleq p = suc m k p x dom x z suc k F x dom x z k k suc m x dom x z suc k F x dom x z k
215 213 214 3anbi13d p = suc m x dom x z : suc p A x dom x z = C k p x dom x z suc k F x dom x z k x dom x z : suc suc m A x dom x z = C k suc m x dom x z suc k F x dom x z k
216 215 rspcev suc m ω x dom x z : suc suc m A x dom x z = C k suc m x dom x z suc k F x dom x z k p ω x dom x z : suc p A x dom x z = C k p x dom x z suc k F x dom x z k
217 57 98 127 211 216 syl13anc k m x suc k F x k x : suc m A m ω z F x m z A x = C p ω x dom x z : suc p A x dom x z = C k p x dom x z suc k F x dom x z k
218 snex dom x z V
219 33 218 unex x dom x z V
220 1 2 219 axdc3lem3 x dom x z S p ω x dom x z : suc p A x dom x z = C k p x dom x z suc k F x dom x z k
221 217 220 sylibr k m x suc k F x k x : suc m A m ω z F x m z A x = C x dom x z S
222 221 3coml z F x m z A x = C k m x suc k F x k x : suc m A m ω x dom x z S
223 222 3exp z F x m z A x = C k m x suc k F x k x : suc m A m ω x dom x z S
224 223 expd z F x m z A x = C k m x suc k F x k x : suc m A m ω x dom x z S
225 54 224 sylcom F : A 𝒫 A x : suc m A z F x m x = C k m x suc k F x k x : suc m A m ω x dom x z S
226 225 3impd F : A 𝒫 A x : suc m A z F x m x = C k m x suc k F x k x : suc m A m ω x dom x z S
227 226 ex F : A 𝒫 A x : suc m A z F x m x = C k m x suc k F x k x : suc m A m ω x dom x z S
228 227 com23 F : A 𝒫 A z F x m x = C k m x suc k F x k x : suc m A m ω x : suc m A x dom x z S
229 50 228 mpdi F : A 𝒫 A z F x m x = C k m x suc k F x k x : suc m A m ω x dom x z S
230 229 imp F : A 𝒫 A z F x m x = C k m x suc k F x k x : suc m A m ω x dom x z S
231 resundir x dom x z dom x = x dom x dom x z dom x
232 frel x : suc m A Rel x
233 resdm Rel x x dom x = x
234 232 233 syl x : suc m A x dom x = x
235 234 adantl m ω x : suc m A x dom x = x
236 69 73 sylan2 m ω x : suc m A dom x ω
237 74 75 syl dom x ω ¬ dom x dom x
238 incom dom x dom x = dom x dom x
239 238 eqeq1i dom x dom x = dom x dom x =
240 59 60 fnsn dom x z Fn dom x
241 fnresdisj dom x z Fn dom x dom x dom x = dom x z dom x =
242 240 241 ax-mp dom x dom x = dom x z dom x =
243 239 242 105 3bitr3ri ¬ dom x dom x dom x z dom x =
244 237 243 sylib dom x ω dom x z dom x =
245 236 244 syl m ω x : suc m A dom x z dom x =
246 235 245 uneq12d m ω x : suc m A x dom x dom x z dom x = x
247 un0 x = x
248 246 247 eqtrdi m ω x : suc m A x dom x dom x z dom x = x
249 231 248 eqtrid m ω x : suc m A x dom x z dom x = x
250 249 ancoms x : suc m A m ω x dom x z dom x = x
251 250 3adant1 k m x suc k F x k x : suc m A m ω x dom x z dom x = x
252 251 3ad2ant3 z F x m x = C k m x suc k F x k x : suc m A m ω x dom x z dom x = x
253 252 adantl F : A 𝒫 A z F x m x = C k m x suc k F x k x : suc m A m ω x dom x z dom x = x
254 103 uneq2i dom x dom dom x z = dom x dom x
255 dmun dom x dom x z = dom x dom dom x z
256 df-suc suc dom x = dom x dom x
257 254 255 256 3eqtr4i dom x dom x z = suc dom x
258 253 257 jctil F : A 𝒫 A z F x m x = C k m x suc k F x k x : suc m A m ω dom x dom x z = suc dom x x dom x z dom x = x
259 dmeq y = x dom x z dom y = dom x dom x z
260 259 eqeq1d y = x dom x z dom y = suc dom x dom x dom x z = suc dom x
261 reseq1 y = x dom x z y dom x = x dom x z dom x
262 261 eqeq1d y = x dom x z y dom x = x x dom x z dom x = x
263 260 262 anbi12d y = x dom x z dom y = suc dom x y dom x = x dom x dom x z = suc dom x x dom x z dom x = x
264 263 rspcev x dom x z S dom x dom x z = suc dom x x dom x z dom x = x y S dom y = suc dom x y dom x = x
265 230 258 264 syl2anc F : A 𝒫 A z F x m x = C k m x suc k F x k x : suc m A m ω y S dom y = suc dom x y dom x = x
266 265 3exp2 F : A 𝒫 A z F x m x = C k m x suc k F x k x : suc m A m ω y S dom y = suc dom x y dom x = x
267 266 exlimdv F : A 𝒫 A z z F x m x = C k m x suc k F x k x : suc m A m ω y S dom y = suc dom x y dom x = x
268 267 adantr F : A 𝒫 A x : suc m A z z F x m x = C k m x suc k F x k x : suc m A m ω y S dom y = suc dom x y dom x = x
269 49 268 mpd F : A 𝒫 A x : suc m A x = C k m x suc k F x k x : suc m A m ω y S dom y = suc dom x y dom x = x
270 269 com3r k m x suc k F x k x : suc m A m ω F : A 𝒫 A x : suc m A x = C y S dom y = suc dom x y dom x = x
271 35 270 mpan2d k m x suc k F x k x : suc m A m ω F : A 𝒫 A x = C y S dom y = suc dom x y dom x = x
272 271 com3r x = C k m x suc k F x k x : suc m A m ω F : A 𝒫 A y S dom y = suc dom x y dom x = x
273 272 3expd x = C k m x suc k F x k x : suc m A m ω F : A 𝒫 A y S dom y = suc dom x y dom x = x
274 273 com3r x : suc m A x = C k m x suc k F x k m ω F : A 𝒫 A y S dom y = suc dom x y dom x = x
275 274 3imp x : suc m A x = C k m x suc k F x k m ω F : A 𝒫 A y S dom y = suc dom x y dom x = x
276 275 com12 m ω x : suc m A x = C k m x suc k F x k F : A 𝒫 A y S dom y = suc dom x y dom x = x
277 276 rexlimiv m ω x : suc m A x = C k m x suc k F x k F : A 𝒫 A y S dom y = suc dom x y dom x = x
278 34 277 sylbi x S F : A 𝒫 A y S dom y = suc dom x y dom x = x
279 278 impcom F : A 𝒫 A x S y S dom y = suc dom x y dom x = x
280 rabn0 y S | dom y = suc dom x y dom x = x y S dom y = suc dom x y dom x = x
281 279 280 sylibr F : A 𝒫 A x S y S | dom y = suc dom x y dom x = x
282 29 rabex y S | dom y = suc dom x y dom x = x V
283 282 elsn y S | dom y = suc dom x y dom x = x y S | dom y = suc dom x y dom x = x =
284 283 necon3bbii ¬ y S | dom y = suc dom x y dom x = x y S | dom y = suc dom x y dom x = x
285 281 284 sylibr F : A 𝒫 A x S ¬ y S | dom y = suc dom x y dom x = x
286 32 285 eldifd F : A 𝒫 A x S y S | dom y = suc dom x y dom x = x 𝒫 S
287 286 3 fmptd F : A 𝒫 A G : S 𝒫 S
288 29 axdc2 S G : S 𝒫 S h h : ω S k ω h suc k G h k
289 28 287 288 syl2an C A F : A 𝒫 A h h : ω S k ω h suc k G h k
290 1 2 3 axdc3lem2 h h : ω S k ω h suc k G h k g g : ω A g = C k ω g suc k F g k
291 289 290 syl C A F : A 𝒫 A g g : ω A g = C k ω g suc k F g k