Metamath Proof Explorer


Theorem axdc4uz

Description: A version of axdc4 that works on an upper set of integers instead of _om . (Contributed by Mario Carneiro, 8-Jan-2014)

Ref Expression
Hypotheses axdc4uz.1 M
axdc4uz.2 Z = M
Assertion axdc4uz A V C A F : Z × A 𝒫 A g g : Z A g M = C k Z g k + 1 k F g k

Proof

Step Hyp Ref Expression
1 axdc4uz.1 M
2 axdc4uz.2 Z = M
3 eleq2 f = A C f C A
4 xpeq2 f = A Z × f = Z × A
5 pweq f = A 𝒫 f = 𝒫 A
6 5 difeq1d f = A 𝒫 f = 𝒫 A
7 4 6 feq23d f = A F : Z × f 𝒫 f F : Z × A 𝒫 A
8 3 7 anbi12d f = A C f F : Z × f 𝒫 f C A F : Z × A 𝒫 A
9 feq3 f = A g : Z f g : Z A
10 9 3anbi1d f = A g : Z f g M = C k Z g k + 1 k F g k g : Z A g M = C k Z g k + 1 k F g k
11 10 exbidv f = A g g : Z f g M = C k Z g k + 1 k F g k g g : Z A g M = C k Z g k + 1 k F g k
12 8 11 imbi12d f = A C f F : Z × f 𝒫 f g g : Z f g M = C k Z g k + 1 k F g k C A F : Z × A 𝒫 A g g : Z A g M = C k Z g k + 1 k F g k
13 vex f V
14 eqid rec y V y + 1 M ω = rec y V y + 1 M ω
15 eqid n ω , x f rec y V y + 1 M ω n F x = n ω , x f rec y V y + 1 M ω n F x
16 1 2 13 14 15 axdc4uzlem C f F : Z × f 𝒫 f g g : Z f g M = C k Z g k + 1 k F g k
17 12 16 vtoclg A V C A F : Z × A 𝒫 A g g : Z A g M = C k Z g k + 1 k F g k
18 17 3impib A V C A F : Z × A 𝒫 A g g : Z A g M = C k Z g k + 1 k F g k