Metamath Proof Explorer


Theorem axdc4uzlem

Description: Lemma for axdc4uz . (Contributed by Mario Carneiro, 8-Jan-2014) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses axdc4uz.1 M
axdc4uz.2 Z = M
axdc4uz.3 A V
axdc4uz.4 G = rec y V y + 1 M ω
axdc4uz.5 H = n ω , x A G n F x
Assertion axdc4uzlem C A F : Z × A 𝒫 A g g : Z A g M = C k Z g k + 1 k F g k

Proof

Step Hyp Ref Expression
1 axdc4uz.1 M
2 axdc4uz.2 Z = M
3 axdc4uz.3 A V
4 axdc4uz.4 G = rec y V y + 1 M ω
5 axdc4uz.5 H = n ω , x A G n F x
6 1 4 om2uzf1oi G : ω 1-1 onto M
7 f1oeq3 Z = M G : ω 1-1 onto Z G : ω 1-1 onto M
8 2 7 ax-mp G : ω 1-1 onto Z G : ω 1-1 onto M
9 6 8 mpbir G : ω 1-1 onto Z
10 f1of G : ω 1-1 onto Z G : ω Z
11 9 10 ax-mp G : ω Z
12 11 ffvelrni n ω G n Z
13 fovrn F : Z × A 𝒫 A G n Z x A G n F x 𝒫 A
14 12 13 syl3an2 F : Z × A 𝒫 A n ω x A G n F x 𝒫 A
15 14 3expb F : Z × A 𝒫 A n ω x A G n F x 𝒫 A
16 15 ralrimivva F : Z × A 𝒫 A n ω x A G n F x 𝒫 A
17 5 fmpo n ω x A G n F x 𝒫 A H : ω × A 𝒫 A
18 16 17 sylib F : Z × A 𝒫 A H : ω × A 𝒫 A
19 3 axdc4 C A H : ω × A 𝒫 A f f : ω A f = C m ω f suc m m H f m
20 18 19 sylan2 C A F : Z × A 𝒫 A f f : ω A f = C m ω f suc m m H f m
21 f1ocnv G : ω 1-1 onto Z G -1 : Z 1-1 onto ω
22 f1of G -1 : Z 1-1 onto ω G -1 : Z ω
23 9 21 22 mp2b G -1 : Z ω
24 fco f : ω A G -1 : Z ω f G -1 : Z A
25 23 24 mpan2 f : ω A f G -1 : Z A
26 25 3ad2ant1 f : ω A f = C m ω f suc m m H f m f G -1 : Z A
27 uzid M M M
28 1 27 ax-mp M M
29 28 2 eleqtrri M Z
30 fvco3 G -1 : Z ω M Z f G -1 M = f G -1 M
31 23 29 30 mp2an f G -1 M = f G -1 M
32 1 4 om2uz0i G = M
33 peano1 ω
34 f1ocnvfv G : ω 1-1 onto Z ω G = M G -1 M =
35 9 33 34 mp2an G = M G -1 M =
36 32 35 ax-mp G -1 M =
37 36 fveq2i f G -1 M = f
38 31 37 eqtri f G -1 M = f
39 simp2 f : ω A f = C m ω f suc m m H f m f = C
40 38 39 eqtrid f : ω A f = C m ω f suc m m H f m f G -1 M = C
41 23 ffvelrni k Z G -1 k ω
42 41 adantl f : ω A k Z G -1 k ω
43 suceq m = G -1 k suc m = suc G -1 k
44 43 fveq2d m = G -1 k f suc m = f suc G -1 k
45 id m = G -1 k m = G -1 k
46 fveq2 m = G -1 k f m = f G -1 k
47 45 46 oveq12d m = G -1 k m H f m = G -1 k H f G -1 k
48 44 47 eleq12d m = G -1 k f suc m m H f m f suc G -1 k G -1 k H f G -1 k
49 48 rspcv G -1 k ω m ω f suc m m H f m f suc G -1 k G -1 k H f G -1 k
50 42 49 syl f : ω A k Z m ω f suc m m H f m f suc G -1 k G -1 k H f G -1 k
51 2 peano2uzs k Z k + 1 Z
52 fvco3 G -1 : Z ω k + 1 Z f G -1 k + 1 = f G -1 k + 1
53 23 51 52 sylancr k Z f G -1 k + 1 = f G -1 k + 1
54 1 4 om2uzsuci G -1 k ω G suc G -1 k = G G -1 k + 1
55 41 54 syl k Z G suc G -1 k = G G -1 k + 1
56 f1ocnvfv2 G : ω 1-1 onto Z k Z G G -1 k = k
57 9 56 mpan k Z G G -1 k = k
58 57 oveq1d k Z G G -1 k + 1 = k + 1
59 55 58 eqtrd k Z G suc G -1 k = k + 1
60 peano2 G -1 k ω suc G -1 k ω
61 41 60 syl k Z suc G -1 k ω
62 f1ocnvfv G : ω 1-1 onto Z suc G -1 k ω G suc G -1 k = k + 1 G -1 k + 1 = suc G -1 k
63 9 61 62 sylancr k Z G suc G -1 k = k + 1 G -1 k + 1 = suc G -1 k
64 59 63 mpd k Z G -1 k + 1 = suc G -1 k
65 64 fveq2d k Z f G -1 k + 1 = f suc G -1 k
66 53 65 eqtr2d k Z f suc G -1 k = f G -1 k + 1
67 66 adantl f : ω A k Z f suc G -1 k = f G -1 k + 1
68 ffvelrn f : ω A G -1 k ω f G -1 k A
69 41 68 sylan2 f : ω A k Z f G -1 k A
70 fveq2 n = G -1 k G n = G G -1 k
71 70 oveq1d n = G -1 k G n F x = G G -1 k F x
72 oveq2 x = f G -1 k G G -1 k F x = G G -1 k F f G -1 k
73 ovex G G -1 k F f G -1 k V
74 71 72 5 73 ovmpo G -1 k ω f G -1 k A G -1 k H f G -1 k = G G -1 k F f G -1 k
75 42 69 74 syl2anc f : ω A k Z G -1 k H f G -1 k = G G -1 k F f G -1 k
76 fvco3 G -1 : Z ω k Z f G -1 k = f G -1 k
77 23 76 mpan k Z f G -1 k = f G -1 k
78 77 eqcomd k Z f G -1 k = f G -1 k
79 57 78 oveq12d k Z G G -1 k F f G -1 k = k F f G -1 k
80 79 adantl f : ω A k Z G G -1 k F f G -1 k = k F f G -1 k
81 75 80 eqtrd f : ω A k Z G -1 k H f G -1 k = k F f G -1 k
82 67 81 eleq12d f : ω A k Z f suc G -1 k G -1 k H f G -1 k f G -1 k + 1 k F f G -1 k
83 50 82 sylibd f : ω A k Z m ω f suc m m H f m f G -1 k + 1 k F f G -1 k
84 83 impancom f : ω A m ω f suc m m H f m k Z f G -1 k + 1 k F f G -1 k
85 84 ralrimiv f : ω A m ω f suc m m H f m k Z f G -1 k + 1 k F f G -1 k
86 85 3adant2 f : ω A f = C m ω f suc m m H f m k Z f G -1 k + 1 k F f G -1 k
87 vex f V
88 rdgfun Fun rec y V y + 1 M
89 omex ω V
90 resfunexg Fun rec y V y + 1 M ω V rec y V y + 1 M ω V
91 88 89 90 mp2an rec y V y + 1 M ω V
92 4 91 eqeltri G V
93 92 cnvex G -1 V
94 87 93 coex f G -1 V
95 feq1 g = f G -1 g : Z A f G -1 : Z A
96 fveq1 g = f G -1 g M = f G -1 M
97 96 eqeq1d g = f G -1 g M = C f G -1 M = C
98 fveq1 g = f G -1 g k + 1 = f G -1 k + 1
99 fveq1 g = f G -1 g k = f G -1 k
100 99 oveq2d g = f G -1 k F g k = k F f G -1 k
101 98 100 eleq12d g = f G -1 g k + 1 k F g k f G -1 k + 1 k F f G -1 k
102 101 ralbidv g = f G -1 k Z g k + 1 k F g k k Z f G -1 k + 1 k F f G -1 k
103 95 97 102 3anbi123d g = f G -1 g : Z A g M = C k Z g k + 1 k F g k f G -1 : Z A f G -1 M = C k Z f G -1 k + 1 k F f G -1 k
104 94 103 spcev f G -1 : Z A f G -1 M = C k Z f G -1 k + 1 k F f G -1 k g g : Z A g M = C k Z g k + 1 k F g k
105 26 40 86 104 syl3anc f : ω A f = C m ω f suc m m H f m g g : Z A g M = C k Z g k + 1 k F g k
106 105 exlimiv f f : ω A f = C m ω f suc m m H f m g g : Z A g M = C k Z g k + 1 k F g k
107 20 106 syl C A F : Z × A 𝒫 A g g : Z A g M = C k Z g k + 1 k F g k