Step |
Hyp |
Ref |
Expression |
1 |
|
axdclem2.1 |
|
2 |
|
frfnom |
|
3 |
1
|
fneq1i |
|
4 |
2 3
|
mpbir |
|
5 |
4
|
a1i |
|
6 |
|
omex |
|
7 |
6
|
a1i |
|
8 |
5 7
|
fnexd |
|
9 |
|
fveq2 |
|
10 |
|
suceq |
|
11 |
10
|
fveq2d |
|
12 |
9 11
|
breq12d |
|
13 |
|
fveq2 |
|
14 |
|
suceq |
|
15 |
14
|
fveq2d |
|
16 |
13 15
|
breq12d |
|
17 |
|
fveq2 |
|
18 |
|
suceq |
|
19 |
18
|
fveq2d |
|
20 |
17 19
|
breq12d |
|
21 |
1
|
fveq1i |
|
22 |
|
fr0g |
|
23 |
22
|
elv |
|
24 |
21 23
|
eqtri |
|
25 |
24
|
breq1i |
|
26 |
25
|
biimpri |
|
27 |
26
|
eximi |
|
28 |
|
peano1 |
|
29 |
1
|
axdclem |
|
30 |
28 29
|
mpi |
|
31 |
27 30
|
syl3an3 |
|
32 |
31
|
3com23 |
|
33 |
|
fvex |
|
34 |
|
fvex |
|
35 |
33 34
|
brelrn |
|
36 |
|
ssel |
|
37 |
35 36
|
syl5 |
|
38 |
34
|
eldm |
|
39 |
37 38
|
syl6ib |
|
40 |
39
|
ad2antll |
|
41 |
|
peano2 |
|
42 |
1
|
axdclem |
|
43 |
41 42
|
syl5 |
|
44 |
43
|
3expia |
|
45 |
44
|
com3r |
|
46 |
45
|
imp |
|
47 |
40 46
|
syld |
|
48 |
47
|
3adantr2 |
|
49 |
48
|
ex |
|
50 |
12 16 20 32 49
|
finds2 |
|
51 |
50
|
com12 |
|
52 |
51
|
ralrimiv |
|
53 |
|
fveq1 |
|
54 |
|
fveq1 |
|
55 |
53 54
|
breq12d |
|
56 |
55
|
ralbidv |
|
57 |
8 52 56
|
spcedv |
|
58 |
57
|
3exp |
|
59 |
|
vex |
|
60 |
59
|
dmex |
|
61 |
60
|
pwex |
|
62 |
61
|
ac4c |
|
63 |
58 62
|
exlimiiv |
|