Metamath Proof Explorer


Theorem axextg

Description: A generalization of the axiom of extensionality in which x and y need not be distinct. (Contributed by NM, 15-Sep-1993) (Proof shortened by Andrew Salmon, 12-Aug-2011) Remove dependencies on ax-10 , ax-12 , ax-13 . (Revised by BJ, 12-Jul-2019) (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Assertion axextg z z x z y x = y

Proof

Step Hyp Ref Expression
1 elequ2 w = x z w z x
2 1 bibi1d w = x z w z y z x z y
3 2 albidv w = x z z w z y z z x z y
4 equequ1 w = x w = y x = y
5 3 4 imbi12d w = x z z w z y w = y z z x z y x = y
6 ax-ext z z w z y w = y
7 5 6 chvarvv z z x z y x = y