Metamath Proof Explorer


Theorem axextnd

Description: A version of the Axiom of Extensionality with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 14-Aug-2003) (New usage is discouraged.)

Ref Expression
Assertion axextnd x x y x z y = z

Proof

Step Hyp Ref Expression
1 nfnae x ¬ x x = y
2 nfnae x ¬ x x = z
3 1 2 nfan x ¬ x x = y ¬ x x = z
4 nfcvf ¬ x x = y _ x y
5 4 adantr ¬ x x = y ¬ x x = z _ x y
6 5 nfcrd ¬ x x = y ¬ x x = z x w y
7 nfcvf ¬ x x = z _ x z
8 7 adantl ¬ x x = y ¬ x x = z _ x z
9 8 nfcrd ¬ x x = y ¬ x x = z x w z
10 6 9 nfbid ¬ x x = y ¬ x x = z x w y w z
11 elequ1 w = x w y x y
12 elequ1 w = x w z x z
13 11 12 bibi12d w = x w y w z x y x z
14 13 a1i ¬ x x = y ¬ x x = z w = x w y w z x y x z
15 3 10 14 cbvald ¬ x x = y ¬ x x = z w w y w z x x y x z
16 axextg w w y w z y = z
17 15 16 syl6bir ¬ x x = y ¬ x x = z x x y x z y = z
18 19.8a y = z x y = z
19 17 18 syl6 ¬ x x = y ¬ x x = z x x y x z x y = z
20 19 ex ¬ x x = y ¬ x x = z x x y x z x y = z
21 ax6e x x = z
22 ax7 x = y x = z y = z
23 22 aleximi x x = y x x = z x y = z
24 21 23 mpi x x = y x y = z
25 24 a1d x x = y x x y x z x y = z
26 ax6e x x = y
27 ax7 x = z x = y z = y
28 equcomi z = y y = z
29 27 28 syl6 x = z x = y y = z
30 29 aleximi x x = z x x = y x y = z
31 26 30 mpi x x = z x y = z
32 31 a1d x x = z x x y x z x y = z
33 20 25 32 pm2.61ii x x y x z x y = z
34 33 19.35ri x x y x z y = z