Metamath Proof Explorer


Theorem axhfi-zf

Description: Derive Axiom ax-hfi from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 U = + norm
axhil.2 U CHil OLD
axhfi.1 ih = 𝑖OLD U
Assertion axhfi-zf ih : ×

Proof

Step Hyp Ref Expression
1 axhil.1 U = + norm
2 axhil.2 U CHil OLD
3 axhfi.1 ih = 𝑖OLD U
4 df-hba = BaseSet + norm
5 1 fveq2i BaseSet U = BaseSet + norm
6 4 5 eqtr4i = BaseSet U
7 6 3 hlipf U CHil OLD ih : ×
8 2 7 ax-mp ih : ×