Metamath Proof Explorer


Theorem axi2m1

Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 . (Contributed by NM, 5-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axi2m1 i i + 1 = 0

Proof

Step Hyp Ref Expression
1 0r 0 𝑹 𝑹
2 1sr 1 𝑹 𝑹
3 mulcnsr 0 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 1 𝑹 0 𝑹 1 𝑹 = 0 𝑹 𝑹 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 1 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 𝑹 1 𝑹
4 1 2 1 2 3 mp4an 0 𝑹 1 𝑹 0 𝑹 1 𝑹 = 0 𝑹 𝑹 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 1 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 𝑹 1 𝑹
5 00sr 0 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 = 0 𝑹
6 1 5 ax-mp 0 𝑹 𝑹 0 𝑹 = 0 𝑹
7 1idsr 1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 = 1 𝑹
8 2 7 ax-mp 1 𝑹 𝑹 1 𝑹 = 1 𝑹
9 8 oveq2i -1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 = -1 𝑹 𝑹 1 𝑹
10 m1r -1 𝑹 𝑹
11 1idsr -1 𝑹 𝑹 -1 𝑹 𝑹 1 𝑹 = -1 𝑹
12 10 11 ax-mp -1 𝑹 𝑹 1 𝑹 = -1 𝑹
13 9 12 eqtri -1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 = -1 𝑹
14 6 13 oveq12i 0 𝑹 𝑹 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 = 0 𝑹 + 𝑹 -1 𝑹
15 addcomsr 0 𝑹 + 𝑹 -1 𝑹 = -1 𝑹 + 𝑹 0 𝑹
16 0idsr -1 𝑹 𝑹 -1 𝑹 + 𝑹 0 𝑹 = -1 𝑹
17 10 16 ax-mp -1 𝑹 + 𝑹 0 𝑹 = -1 𝑹
18 14 15 17 3eqtri 0 𝑹 𝑹 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 = -1 𝑹
19 00sr 1 𝑹 𝑹 1 𝑹 𝑹 0 𝑹 = 0 𝑹
20 2 19 ax-mp 1 𝑹 𝑹 0 𝑹 = 0 𝑹
21 1idsr 0 𝑹 𝑹 0 𝑹 𝑹 1 𝑹 = 0 𝑹
22 1 21 ax-mp 0 𝑹 𝑹 1 𝑹 = 0 𝑹
23 20 22 oveq12i 1 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 𝑹 1 𝑹 = 0 𝑹 + 𝑹 0 𝑹
24 0idsr 0 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 = 0 𝑹
25 1 24 ax-mp 0 𝑹 + 𝑹 0 𝑹 = 0 𝑹
26 23 25 eqtri 1 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 𝑹 1 𝑹 = 0 𝑹
27 18 26 opeq12i 0 𝑹 𝑹 0 𝑹 + 𝑹 -1 𝑹 𝑹 1 𝑹 𝑹 1 𝑹 1 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 𝑹 1 𝑹 = -1 𝑹 0 𝑹
28 4 27 eqtri 0 𝑹 1 𝑹 0 𝑹 1 𝑹 = -1 𝑹 0 𝑹
29 28 oveq1i 0 𝑹 1 𝑹 0 𝑹 1 𝑹 + 1 𝑹 0 𝑹 = -1 𝑹 0 𝑹 + 1 𝑹 0 𝑹
30 addresr -1 𝑹 𝑹 1 𝑹 𝑹 -1 𝑹 0 𝑹 + 1 𝑹 0 𝑹 = -1 𝑹 + 𝑹 1 𝑹 0 𝑹
31 10 2 30 mp2an -1 𝑹 0 𝑹 + 1 𝑹 0 𝑹 = -1 𝑹 + 𝑹 1 𝑹 0 𝑹
32 m1p1sr -1 𝑹 + 𝑹 1 𝑹 = 0 𝑹
33 32 opeq1i -1 𝑹 + 𝑹 1 𝑹 0 𝑹 = 0 𝑹 0 𝑹
34 29 31 33 3eqtri 0 𝑹 1 𝑹 0 𝑹 1 𝑹 + 1 𝑹 0 𝑹 = 0 𝑹 0 𝑹
35 df-i i = 0 𝑹 1 𝑹
36 35 35 oveq12i i i = 0 𝑹 1 𝑹 0 𝑹 1 𝑹
37 df-1 1 = 1 𝑹 0 𝑹
38 36 37 oveq12i i i + 1 = 0 𝑹 1 𝑹 0 𝑹 1 𝑹 + 1 𝑹 0 𝑹
39 df-0 0 = 0 𝑹 0 𝑹
40 34 38 39 3eqtr4i i i + 1 = 0