| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zfinf |  | 
						
							| 2 |  | nfnae |  | 
						
							| 3 |  | nfnae |  | 
						
							| 4 | 2 3 | nfan |  | 
						
							| 5 |  | nfcvf |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | nfcvd |  | 
						
							| 8 | 6 7 | nfeld |  | 
						
							| 9 |  | nfnae |  | 
						
							| 10 |  | nfnae |  | 
						
							| 11 | 9 10 | nfan |  | 
						
							| 12 |  | nfnae |  | 
						
							| 13 |  | nfnae |  | 
						
							| 14 | 12 13 | nfan |  | 
						
							| 15 |  | nfcvf |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 6 16 | nfeld |  | 
						
							| 18 | 16 7 | nfeld |  | 
						
							| 19 | 17 18 | nfand |  | 
						
							| 20 | 14 19 | nfexd |  | 
						
							| 21 | 8 20 | nfimd |  | 
						
							| 22 | 11 21 | nfald |  | 
						
							| 23 | 8 22 | nfand |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 24 | eleq2d |  | 
						
							| 26 |  | nfcvd |  | 
						
							| 27 |  | nfcvf2 |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 26 28 | nfeqd |  | 
						
							| 30 | 11 29 | nfan1 |  | 
						
							| 31 |  | nfcvd |  | 
						
							| 32 |  | nfcvf2 |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 | 31 33 | nfeqd |  | 
						
							| 35 | 14 34 | nfan1 |  | 
						
							| 36 |  | elequ2 |  | 
						
							| 37 | 36 | anbi2d |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 35 38 | exbid |  | 
						
							| 40 | 25 39 | imbi12d |  | 
						
							| 41 | 30 40 | albid |  | 
						
							| 42 | 25 41 | anbi12d |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 4 23 43 | cbvexd |  | 
						
							| 45 | 1 44 | mpbii |  | 
						
							| 46 | 45 | a1d |  | 
						
							| 47 | 46 | ex |  | 
						
							| 48 |  | nd1 |  | 
						
							| 49 | 48 | pm2.21d |  | 
						
							| 50 |  | nd2 |  | 
						
							| 51 | 50 | pm2.21d |  | 
						
							| 52 | 47 49 51 | pm2.61ii |  |