Metamath Proof Explorer


Theorem axltadd

Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axltadd A B C A < B C + A < C + B

Proof

Step Hyp Ref Expression
1 ax-pre-ltadd A B C A < B C + A < C + B
2 ltxrlt A B A < B A < B
3 2 3adant3 A B C A < B A < B
4 readdcl C A C + A
5 readdcl C B C + B
6 ltxrlt C + A C + B C + A < C + B C + A < C + B
7 4 5 6 syl2an C A C B C + A < C + B C + A < C + B
8 7 3impdi C A B C + A < C + B C + A < C + B
9 8 3coml A B C C + A < C + B C + A < C + B
10 1 3 9 3imtr4d A B C A < B C + A < C + B