Step |
Hyp |
Ref |
Expression |
1 |
|
dfcnqs |
|
2 |
|
mulcnsrec |
|
3 |
|
mulcnsrec |
|
4 |
|
mulcnsrec |
|
5 |
|
mulcnsrec |
|
6 |
|
mulclsr |
|
7 |
|
m1r |
|
8 |
|
mulclsr |
|
9 |
|
mulclsr |
|
10 |
7 8 9
|
sylancr |
|
11 |
|
addclsr |
|
12 |
6 10 11
|
syl2an |
|
13 |
12
|
an4s |
|
14 |
|
mulclsr |
|
15 |
|
mulclsr |
|
16 |
|
addclsr |
|
17 |
14 15 16
|
syl2anr |
|
18 |
17
|
an42s |
|
19 |
13 18
|
jca |
|
20 |
|
mulclsr |
|
21 |
|
mulclsr |
|
22 |
|
mulclsr |
|
23 |
7 21 22
|
sylancr |
|
24 |
|
addclsr |
|
25 |
20 23 24
|
syl2an |
|
26 |
25
|
an4s |
|
27 |
|
mulclsr |
|
28 |
|
mulclsr |
|
29 |
|
addclsr |
|
30 |
27 28 29
|
syl2anr |
|
31 |
30
|
an42s |
|
32 |
26 31
|
jca |
|
33 |
|
ovex |
|
34 |
|
ovex |
|
35 |
|
ovex |
|
36 |
|
addcomsr |
|
37 |
|
addasssr |
|
38 |
|
ovex |
|
39 |
33 34 35 36 37 38
|
caov42 |
|
40 |
|
distrsr |
|
41 |
|
distrsr |
|
42 |
41
|
oveq2i |
|
43 |
|
distrsr |
|
44 |
42 43
|
eqtri |
|
45 |
40 44
|
oveq12i |
|
46 |
|
vex |
|
47 |
7
|
elexi |
|
48 |
|
vex |
|
49 |
|
mulcomsr |
|
50 |
|
distrsr |
|
51 |
|
ovex |
|
52 |
|
vex |
|
53 |
|
mulasssr |
|
54 |
46 47 48 49 50 51 52 53
|
caovdilem |
|
55 |
|
mulasssr |
|
56 |
55
|
oveq2i |
|
57 |
56
|
oveq2i |
|
58 |
54 57
|
eqtri |
|
59 |
|
vex |
|
60 |
|
vex |
|
61 |
|
vex |
|
62 |
59 46 48 49 50 60 61 53
|
caovdilem |
|
63 |
62
|
oveq2i |
|
64 |
|
distrsr |
|
65 |
|
ovex |
|
66 |
47 46 65 49 53
|
caov12 |
|
67 |
66
|
oveq2i |
|
68 |
64 67
|
eqtri |
|
69 |
63 68
|
eqtri |
|
70 |
58 69
|
oveq12i |
|
71 |
39 45 70
|
3eqtr4ri |
|
72 |
|
ovex |
|
73 |
|
ovex |
|
74 |
|
ovex |
|
75 |
|
ovex |
|
76 |
72 73 74 36 37 75
|
caov42 |
|
77 |
|
distrsr |
|
78 |
|
distrsr |
|
79 |
77 78
|
oveq12i |
|
80 |
59 46 48 49 50 60 52 53
|
caovdilem |
|
81 |
46 47 48 49 50 51 61 53
|
caovdilem |
|
82 |
|
mulasssr |
|
83 |
82
|
oveq2i |
|
84 |
47 59 65 49 53
|
caov12 |
|
85 |
83 84
|
eqtri |
|
86 |
85
|
oveq2i |
|
87 |
81 86
|
eqtri |
|
88 |
80 87
|
oveq12i |
|
89 |
76 79 88
|
3eqtr4ri |
|
90 |
1 2 3 4 5 19 32 71 89
|
ecovass |
|