Metamath Proof Explorer


Theorem axmulcom

Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom be used later. Instead, use mulcom . (Contributed by NM, 31-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion axmulcom A B A B = B A

Proof

Step Hyp Ref Expression
1 dfcnqs = 𝑹 × 𝑹 / E -1
2 mulcnsrec x 𝑹 y 𝑹 z 𝑹 w 𝑹 x y E -1 z w E -1 = x 𝑹 z + 𝑹 -1 𝑹 𝑹 y 𝑹 w y 𝑹 z + 𝑹 x 𝑹 w E -1
3 mulcnsrec z 𝑹 w 𝑹 x 𝑹 y 𝑹 z w E -1 x y E -1 = z 𝑹 x + 𝑹 -1 𝑹 𝑹 w 𝑹 y w 𝑹 x + 𝑹 z 𝑹 y E -1
4 mulcomsr x 𝑹 z = z 𝑹 x
5 mulcomsr y 𝑹 w = w 𝑹 y
6 5 oveq2i -1 𝑹 𝑹 y 𝑹 w = -1 𝑹 𝑹 w 𝑹 y
7 4 6 oveq12i x 𝑹 z + 𝑹 -1 𝑹 𝑹 y 𝑹 w = z 𝑹 x + 𝑹 -1 𝑹 𝑹 w 𝑹 y
8 mulcomsr y 𝑹 z = z 𝑹 y
9 mulcomsr x 𝑹 w = w 𝑹 x
10 8 9 oveq12i y 𝑹 z + 𝑹 x 𝑹 w = z 𝑹 y + 𝑹 w 𝑹 x
11 addcomsr z 𝑹 y + 𝑹 w 𝑹 x = w 𝑹 x + 𝑹 z 𝑹 y
12 10 11 eqtri y 𝑹 z + 𝑹 x 𝑹 w = w 𝑹 x + 𝑹 z 𝑹 y
13 1 2 3 7 12 ecovcom A B A B = B A