Metamath Proof Explorer


Theorem axmulf

Description: Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl . This construction-dependent theorem should not be referenced directly; instead, use ax-mulf . (Contributed by NM, 8-Feb-2005) (New usage is discouraged.)

Ref Expression
Assertion axmulf × : ×

Proof

Step Hyp Ref Expression
1 moeq * z z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
2 1 mosubop * z u f y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
3 2 mosubop * z w v x = w v u f y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
4 anass x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
5 4 2exbii u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
6 19.42vv u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f x = w v u f y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
7 5 6 bitri u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f x = w v u f y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
8 7 2exbii w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f w v x = w v u f y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
9 8 mobii * z w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f * z w v x = w v u f y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
10 3 9 mpbir * z w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
11 10 moani * z x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
12 11 funoprab Fun x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
13 df-mul × = x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
14 13 funeqi Fun × Fun x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
15 12 14 mpbir Fun ×
16 13 dmeqi dom × = dom x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
17 dmoprabss dom x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f ×
18 16 17 eqsstri dom × ×
19 0ncn ¬
20 df-c = 𝑹 × 𝑹
21 oveq1 z w = x z w v u = x v u
22 21 eleq1d z w = x z w v u 𝑹 × 𝑹 x v u 𝑹 × 𝑹
23 oveq2 v u = y x v u = x y
24 23 eleq1d v u = y x v u 𝑹 × 𝑹 x y 𝑹 × 𝑹
25 mulcnsr z 𝑹 w 𝑹 v 𝑹 u 𝑹 z w v u = z 𝑹 v + 𝑹 -1 𝑹 𝑹 w 𝑹 u w 𝑹 v + 𝑹 z 𝑹 u
26 mulclsr z 𝑹 v 𝑹 z 𝑹 v 𝑹
27 m1r -1 𝑹 𝑹
28 mulclsr w 𝑹 u 𝑹 w 𝑹 u 𝑹
29 mulclsr -1 𝑹 𝑹 w 𝑹 u 𝑹 -1 𝑹 𝑹 w 𝑹 u 𝑹
30 27 28 29 sylancr w 𝑹 u 𝑹 -1 𝑹 𝑹 w 𝑹 u 𝑹
31 addclsr z 𝑹 v 𝑹 -1 𝑹 𝑹 w 𝑹 u 𝑹 z 𝑹 v + 𝑹 -1 𝑹 𝑹 w 𝑹 u 𝑹
32 26 30 31 syl2an z 𝑹 v 𝑹 w 𝑹 u 𝑹 z 𝑹 v + 𝑹 -1 𝑹 𝑹 w 𝑹 u 𝑹
33 32 an4s z 𝑹 w 𝑹 v 𝑹 u 𝑹 z 𝑹 v + 𝑹 -1 𝑹 𝑹 w 𝑹 u 𝑹
34 mulclsr w 𝑹 v 𝑹 w 𝑹 v 𝑹
35 mulclsr z 𝑹 u 𝑹 z 𝑹 u 𝑹
36 addclsr w 𝑹 v 𝑹 z 𝑹 u 𝑹 w 𝑹 v + 𝑹 z 𝑹 u 𝑹
37 34 35 36 syl2anr z 𝑹 u 𝑹 w 𝑹 v 𝑹 w 𝑹 v + 𝑹 z 𝑹 u 𝑹
38 37 an42s z 𝑹 w 𝑹 v 𝑹 u 𝑹 w 𝑹 v + 𝑹 z 𝑹 u 𝑹
39 33 38 opelxpd z 𝑹 w 𝑹 v 𝑹 u 𝑹 z 𝑹 v + 𝑹 -1 𝑹 𝑹 w 𝑹 u w 𝑹 v + 𝑹 z 𝑹 u 𝑹 × 𝑹
40 25 39 eqeltrd z 𝑹 w 𝑹 v 𝑹 u 𝑹 z w v u 𝑹 × 𝑹
41 20 22 24 40 2optocl x y x y 𝑹 × 𝑹
42 41 20 eleqtrrdi x y x y
43 19 42 oprssdm × dom ×
44 18 43 eqssi dom × = ×
45 df-fn × Fn × Fun × dom × = ×
46 15 44 45 mpbir2an × Fn ×
47 42 rgen2 x y x y
48 ffnov × : × × Fn × x y x y
49 46 47 48 mpbir2an × : ×