Metamath Proof Explorer


Theorem axmulgt0

Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axmulgt0 A B 0 < A 0 < B 0 < A B

Proof

Step Hyp Ref Expression
1 ax-pre-mulgt0 A B 0 < A 0 < B 0 < A B
2 0re 0
3 ltxrlt 0 A 0 < A 0 < A
4 2 3 mpan A 0 < A 0 < A
5 ltxrlt 0 B 0 < B 0 < B
6 2 5 mpan B 0 < B 0 < B
7 4 6 bi2anan9 A B 0 < A 0 < B 0 < A 0 < B
8 remulcl A B A B
9 ltxrlt 0 A B 0 < A B 0 < A B
10 2 8 9 sylancr A B 0 < A B 0 < A B
11 1 7 10 3imtr4d A B 0 < A 0 < B 0 < A B