Metamath Proof Explorer


Theorem axmulrcl

Description: Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl be used later. Instead, in most cases use remulcl . (New usage is discouraged.) (Contributed by NM, 31-Mar-1996)

Ref Expression
Assertion axmulrcl A B A B

Proof

Step Hyp Ref Expression
1 elreal A x 𝑹 x 0 𝑹 = A
2 elreal B y 𝑹 y 0 𝑹 = B
3 oveq1 x 0 𝑹 = A x 0 𝑹 y 0 𝑹 = A y 0 𝑹
4 3 eleq1d x 0 𝑹 = A x 0 𝑹 y 0 𝑹 A y 0 𝑹
5 oveq2 y 0 𝑹 = B A y 0 𝑹 = A B
6 5 eleq1d y 0 𝑹 = B A y 0 𝑹 A B
7 mulresr x 𝑹 y 𝑹 x 0 𝑹 y 0 𝑹 = x 𝑹 y 0 𝑹
8 mulclsr x 𝑹 y 𝑹 x 𝑹 y 𝑹
9 opelreal x 𝑹 y 0 𝑹 x 𝑹 y 𝑹
10 8 9 sylibr x 𝑹 y 𝑹 x 𝑹 y 0 𝑹
11 7 10 eqeltrd x 𝑹 y 𝑹 x 0 𝑹 y 0 𝑹
12 1 2 4 6 11 2gencl A B A B