Metamath Proof Explorer


Theorem axnulALT

Description: Alternate proof of axnul , proved from propositional calculus, ax-gen , ax-4 , sp , and ax-rep . To check this, replace sp with the obsolete axiom ax-c5 in the proof of axnulALT and type the Metamath program "MM> SHOW TRACE__BACK axnulALT / AXIOMS" command. (Contributed by Jeff Hoffman, 3-Feb-2008) (Proof shortened by Mario Carneiro, 17-Nov-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axnulALT x y ¬ y x

Proof

Step Hyp Ref Expression
1 ax-rep w x y x y = x x y y x w w z x
2 sp x ¬ y x y = x ¬ y x y = x
3 2 con2i y x y = x ¬ x ¬ y x y = x
4 df-ex x y x y = x ¬ x ¬ y x y = x
5 3 4 sylibr y x y = x x y x y = x
6 fal ¬
7 sp x
8 6 7 mto ¬ x
9 8 pm2.21i x y = x
10 5 9 mpg x y x y = x
11 1 10 mpg x y y x w w z x
12 8 intnan ¬ w z x
13 12 nex ¬ w w z x
14 13 nbn ¬ y x y x w w z x
15 14 albii y ¬ y x y y x w w z x
16 15 exbii x y ¬ y x x y y x w w z x
17 11 16 mpbir x y ¬ y x