Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | axorbciffatcxorb.1 | ||
axorbciffatcxorb.2 | |||
Assertion | axorbciffatcxorb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axorbciffatcxorb.1 | ||
2 | axorbciffatcxorb.2 | ||
3 | 1 | axorbtnotaiffb | |
4 | xor3 | ||
5 | 3 4 | mpbi | |
6 | 5 2 | aiffnbandciffatnotciffb | |
7 | df-xor | ||
8 | 6 7 | mpbir |