Metamath Proof Explorer


Theorem axorbciffatcxorb

Description: Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses axorbciffatcxorb.1 φ ψ
axorbciffatcxorb.2 χ φ
Assertion axorbciffatcxorb χ ψ

Proof

Step Hyp Ref Expression
1 axorbciffatcxorb.1 φ ψ
2 axorbciffatcxorb.2 χ φ
3 1 axorbtnotaiffb ¬ φ ψ
4 xor3 ¬ φ ψ φ ¬ ψ
5 3 4 mpbi φ ¬ ψ
6 5 2 aiffnbandciffatnotciffb ¬ χ ψ
7 df-xor χ ψ ¬ χ ψ
8 6 7 mpbir χ ψ