Metamath Proof Explorer


Theorem axpow3

Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion axpow3 y z z x z y

Proof

Step Hyp Ref Expression
1 axpow2 y z z x z y
2 1 bm1.3ii y z z y z x
3 bicom z x z y z y z x
4 3 albii z z x z y z z y z x
5 4 exbii y z z x z y y z z y z x
6 2 5 mpbir y z z x z y