Metamath Proof Explorer


Theorem axpow3

Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)

Ref Expression
Assertion axpow3 y z z x z y

Proof

Step Hyp Ref Expression
1 axpow2 y z z x z y
2 1 sepexi y z z y z x
3 bicom1 z y z x z x z y
4 3 alimi z z y z x z z x z y
5 2 4 eximii y z z x z y