Description: A variant of the Axiom of Power Sets ax-pow . For any set x , there exists a set y whose members are exactly the subsets of x i.e. the power set of x . Axiom Pow of BellMachover p. 466. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpow3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axpow2 | ||
| 2 | 1 | sepexi | |
| 3 | bicom1 | ||
| 4 | 3 | alimi | |
| 5 | 2 4 | eximii |