Metamath Proof Explorer


Theorem axpr

Description: Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr below so that the uses of the Axiom of Pairing can be more easily identified.

For a shorter proof using ax-ext , see axprALT . (Contributed by NM, 14-Nov-2006) Remove dependency on ax-ext . (Revised by Rohan Ridenour, 10-Aug-2023) (Proof shortened by BJ, 13-Aug-2023) Use ax-pr instead. (New usage is discouraged.)

Ref Expression
Assertion axpr z w w = x w = y w z

Proof

Step Hyp Ref Expression
1 axprlem3 z w w z s s p if- n n s w = x w = y
2 biimpr w z s s p if- n n s w = x w = y s s p if- n n s w = x w = y w z
3 2 alimi w w z s s p if- n n s w = x w = y w s s p if- n n s w = x w = y w z
4 1 3 eximii z w s s p if- n n s w = x w = y w z
5 axprlem4 s n s t ¬ t n s p w = x s s p if- n n s w = x w = y
6 axprlem5 s n s t ¬ t n s p w = y s s p if- n n s w = x w = y
7 5 6 jaodan s n s t ¬ t n s p w = x w = y s s p if- n n s w = x w = y
8 7 ex s n s t ¬ t n s p w = x w = y s s p if- n n s w = x w = y
9 8 imim1d s n s t ¬ t n s p s s p if- n n s w = x w = y w z w = x w = y w z
10 9 alimdv s n s t ¬ t n s p w s s p if- n n s w = x w = y w z w w = x w = y w z
11 10 eximdv s n s t ¬ t n s p z w s s p if- n n s w = x w = y w z z w w = x w = y w z
12 4 11 mpi s n s t ¬ t n s p z w w = x w = y w z
13 axprlem2 p s n s t ¬ t n s p
14 12 13 exlimiiv z w w = x w = y w z