Metamath Proof Explorer


Theorem axprALT

Description: Alternate proof of axpr . (Contributed by NM, 14-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion axprALT z w w = x w = y w z

Proof

Step Hyp Ref Expression
1 zfpair x y V
2 1 isseti z z = x y
3 dfcleq z = x y w w z w x y
4 vex w V
5 4 elpr w x y w = x w = y
6 5 bibi2i w z w x y w z w = x w = y
7 biimpr w z w = x w = y w = x w = y w z
8 6 7 sylbi w z w x y w = x w = y w z
9 8 alimi w w z w x y w w = x w = y w z
10 3 9 sylbi z = x y w w = x w = y w z
11 2 10 eximii z w w = x w = y w z