Metamath Proof Explorer


Theorem axpre-lttri

Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion axpre-lttri A B A < B ¬ A = B B < A

Proof

Step Hyp Ref Expression
1 elreal A x 𝑹 x 0 𝑹 = A
2 elreal B y 𝑹 y 0 𝑹 = B
3 breq1 x 0 𝑹 = A x 0 𝑹 < y 0 𝑹 A < y 0 𝑹
4 eqeq1 x 0 𝑹 = A x 0 𝑹 = y 0 𝑹 A = y 0 𝑹
5 breq2 x 0 𝑹 = A y 0 𝑹 < x 0 𝑹 y 0 𝑹 < A
6 4 5 orbi12d x 0 𝑹 = A x 0 𝑹 = y 0 𝑹 y 0 𝑹 < x 0 𝑹 A = y 0 𝑹 y 0 𝑹 < A
7 6 notbid x 0 𝑹 = A ¬ x 0 𝑹 = y 0 𝑹 y 0 𝑹 < x 0 𝑹 ¬ A = y 0 𝑹 y 0 𝑹 < A
8 3 7 bibi12d x 0 𝑹 = A x 0 𝑹 < y 0 𝑹 ¬ x 0 𝑹 = y 0 𝑹 y 0 𝑹 < x 0 𝑹 A < y 0 𝑹 ¬ A = y 0 𝑹 y 0 𝑹 < A
9 breq2 y 0 𝑹 = B A < y 0 𝑹 A < B
10 eqeq2 y 0 𝑹 = B A = y 0 𝑹 A = B
11 breq1 y 0 𝑹 = B y 0 𝑹 < A B < A
12 10 11 orbi12d y 0 𝑹 = B A = y 0 𝑹 y 0 𝑹 < A A = B B < A
13 12 notbid y 0 𝑹 = B ¬ A = y 0 𝑹 y 0 𝑹 < A ¬ A = B B < A
14 9 13 bibi12d y 0 𝑹 = B A < y 0 𝑹 ¬ A = y 0 𝑹 y 0 𝑹 < A A < B ¬ A = B B < A
15 ltsosr < 𝑹 Or 𝑹
16 sotric < 𝑹 Or 𝑹 x 𝑹 y 𝑹 x < 𝑹 y ¬ x = y y < 𝑹 x
17 15 16 mpan x 𝑹 y 𝑹 x < 𝑹 y ¬ x = y y < 𝑹 x
18 ltresr x 0 𝑹 < y 0 𝑹 x < 𝑹 y
19 vex x V
20 19 eqresr x 0 𝑹 = y 0 𝑹 x = y
21 ltresr y 0 𝑹 < x 0 𝑹 y < 𝑹 x
22 20 21 orbi12i x 0 𝑹 = y 0 𝑹 y 0 𝑹 < x 0 𝑹 x = y y < 𝑹 x
23 22 notbii ¬ x 0 𝑹 = y 0 𝑹 y 0 𝑹 < x 0 𝑹 ¬ x = y y < 𝑹 x
24 17 18 23 3bitr4g x 𝑹 y 𝑹 x 0 𝑹 < y 0 𝑹 ¬ x 0 𝑹 = y 0 𝑹 y 0 𝑹 < x 0 𝑹
25 1 2 8 14 24 2gencl A B A < B ¬ A = B B < A