Metamath Proof Explorer


Theorem axpre-mulgt0

Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 . (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axpre-mulgt0 A B 0 < A 0 < B 0 < A B

Proof

Step Hyp Ref Expression
1 elreal A x 𝑹 x 0 𝑹 = A
2 elreal B y 𝑹 y 0 𝑹 = B
3 breq2 x 0 𝑹 = A 0 < x 0 𝑹 0 < A
4 3 anbi1d x 0 𝑹 = A 0 < x 0 𝑹 0 < y 0 𝑹 0 < A 0 < y 0 𝑹
5 oveq1 x 0 𝑹 = A x 0 𝑹 y 0 𝑹 = A y 0 𝑹
6 5 breq2d x 0 𝑹 = A 0 < x 0 𝑹 y 0 𝑹 0 < A y 0 𝑹
7 4 6 imbi12d x 0 𝑹 = A 0 < x 0 𝑹 0 < y 0 𝑹 0 < x 0 𝑹 y 0 𝑹 0 < A 0 < y 0 𝑹 0 < A y 0 𝑹
8 breq2 y 0 𝑹 = B 0 < y 0 𝑹 0 < B
9 8 anbi2d y 0 𝑹 = B 0 < A 0 < y 0 𝑹 0 < A 0 < B
10 oveq2 y 0 𝑹 = B A y 0 𝑹 = A B
11 10 breq2d y 0 𝑹 = B 0 < A y 0 𝑹 0 < A B
12 9 11 imbi12d y 0 𝑹 = B 0 < A 0 < y 0 𝑹 0 < A y 0 𝑹 0 < A 0 < B 0 < A B
13 df-0 0 = 0 𝑹 0 𝑹
14 13 breq1i 0 < x 0 𝑹 0 𝑹 0 𝑹 < x 0 𝑹
15 ltresr 0 𝑹 0 𝑹 < x 0 𝑹 0 𝑹 < 𝑹 x
16 14 15 bitri 0 < x 0 𝑹 0 𝑹 < 𝑹 x
17 13 breq1i 0 < y 0 𝑹 0 𝑹 0 𝑹 < y 0 𝑹
18 ltresr 0 𝑹 0 𝑹 < y 0 𝑹 0 𝑹 < 𝑹 y
19 17 18 bitri 0 < y 0 𝑹 0 𝑹 < 𝑹 y
20 mulgt0sr 0 𝑹 < 𝑹 x 0 𝑹 < 𝑹 y 0 𝑹 < 𝑹 x 𝑹 y
21 16 19 20 syl2anb 0 < x 0 𝑹 0 < y 0 𝑹 0 𝑹 < 𝑹 x 𝑹 y
22 13 a1i x 𝑹 y 𝑹 0 = 0 𝑹 0 𝑹
23 mulresr x 𝑹 y 𝑹 x 0 𝑹 y 0 𝑹 = x 𝑹 y 0 𝑹
24 22 23 breq12d x 𝑹 y 𝑹 0 < x 0 𝑹 y 0 𝑹 0 𝑹 0 𝑹 < x 𝑹 y 0 𝑹
25 ltresr 0 𝑹 0 𝑹 < x 𝑹 y 0 𝑹 0 𝑹 < 𝑹 x 𝑹 y
26 24 25 bitrdi x 𝑹 y 𝑹 0 < x 0 𝑹 y 0 𝑹 0 𝑹 < 𝑹 x 𝑹 y
27 21 26 syl5ibr x 𝑹 y 𝑹 0 < x 0 𝑹 0 < y 0 𝑹 0 < x 0 𝑹 y 0 𝑹
28 1 2 7 12 27 2gencl A B 0 < A 0 < B 0 < A B