Metamath Proof Explorer


Theorem axprlem3

Description: Lemma for axpr . Eliminate the antecedent of the relevant replacement instance. (Contributed by Rohan Ridenour, 10-Aug-2023)

Ref Expression
Assertion axprlem3 z w w z s s p if- n n s w = x w = y

Proof

Step Hyp Ref Expression
1 nfv z if- n n s w = x w = y
2 1 axrep4 s z w if- n n s w = x w = y w = z z w w z s s p if- n n s w = x w = y
3 ax6evr z x = z
4 ifptru n n s if- n n s w = x w = y w = x
5 4 biimpd n n s if- n n s w = x w = y w = x
6 equtrr x = z w = x w = z
7 5 6 sylan9r x = z n n s if- n n s w = x w = y w = z
8 7 alrimiv x = z n n s w if- n n s w = x w = y w = z
9 8 expcom n n s x = z w if- n n s w = x w = y w = z
10 9 eximdv n n s z x = z z w if- n n s w = x w = y w = z
11 3 10 mpi n n s z w if- n n s w = x w = y w = z
12 ax6evr z y = z
13 ifpfal ¬ n n s if- n n s w = x w = y w = y
14 13 biimpd ¬ n n s if- n n s w = x w = y w = y
15 14 adantl y = z ¬ n n s if- n n s w = x w = y w = y
16 simpl y = z ¬ n n s y = z
17 equtr w = y y = z w = z
18 15 16 17 syl6ci y = z ¬ n n s if- n n s w = x w = y w = z
19 18 alrimiv y = z ¬ n n s w if- n n s w = x w = y w = z
20 19 expcom ¬ n n s y = z w if- n n s w = x w = y w = z
21 20 eximdv ¬ n n s z y = z z w if- n n s w = x w = y w = z
22 12 21 mpi ¬ n n s z w if- n n s w = x w = y w = z
23 11 22 pm2.61i z w if- n n s w = x w = y w = z
24 2 23 mpg z w w z s s p if- n n s w = x w = y