Metamath Proof Explorer


Theorem axregndlem1

Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axregndlem1 x x = z x y x x y z z x ¬ z y

Proof

Step Hyp Ref Expression
1 19.8a x y x x y
2 nfae x x x = z
3 nfae z x x = z
4 elirrv ¬ x x
5 elequ1 x = z x x z x
6 4 5 mtbii x = z ¬ z x
7 6 sps x x = z ¬ z x
8 7 pm2.21d x x = z z x ¬ z y
9 3 8 alrimi x x = z z z x ¬ z y
10 9 anim2i x y x x = z x y z z x ¬ z y
11 10 expcom x x = z x y x y z z x ¬ z y
12 2 11 eximd x x = z x x y x x y z z x ¬ z y
13 1 12 syl5 x x = z x y x x y z z x ¬ z y