Metamath Proof Explorer


Theorem axregndlem2

Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Jan-2002) (Proof shortened by Mario Carneiro, 10-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion axregndlem2 x y x x y z z x ¬ z y

Proof

Step Hyp Ref Expression
1 axreg2 w y w w y z z w ¬ z y
2 1 ax-gen w w y w w y z z w ¬ z y
3 nfnae x ¬ x x = y
4 nfnae x ¬ x x = z
5 3 4 nfan x ¬ x x = y ¬ x x = z
6 nfcvd ¬ x x = y ¬ x x = z _ x w
7 nfcvf ¬ x x = y _ x y
8 7 adantr ¬ x x = y ¬ x x = z _ x y
9 6 8 nfeld ¬ x x = y ¬ x x = z x w y
10 nfv w ¬ x x = y ¬ x x = z
11 nfnae z ¬ x x = y
12 nfnae z ¬ x x = z
13 11 12 nfan z ¬ x x = y ¬ x x = z
14 nfcvf ¬ x x = z _ x z
15 14 adantl ¬ x x = y ¬ x x = z _ x z
16 15 6 nfeld ¬ x x = y ¬ x x = z x z w
17 15 8 nfeld ¬ x x = y ¬ x x = z x z y
18 17 nfnd ¬ x x = y ¬ x x = z x ¬ z y
19 16 18 nfimd ¬ x x = y ¬ x x = z x z w ¬ z y
20 13 19 nfald ¬ x x = y ¬ x x = z x z z w ¬ z y
21 9 20 nfand ¬ x x = y ¬ x x = z x w y z z w ¬ z y
22 10 21 nfexd ¬ x x = y ¬ x x = z x w w y z z w ¬ z y
23 9 22 nfimd ¬ x x = y ¬ x x = z x w y w w y z z w ¬ z y
24 simpr ¬ x x = y ¬ x x = z w = x w = x
25 24 eleq1d ¬ x x = y ¬ x x = z w = x w y x y
26 nfcvd ¬ x x = y ¬ x x = z _ z w
27 nfcvf2 ¬ x x = z _ z x
28 27 adantl ¬ x x = y ¬ x x = z _ z x
29 26 28 nfeqd ¬ x x = y ¬ x x = z z w = x
30 13 29 nfan1 z ¬ x x = y ¬ x x = z w = x
31 24 eleq2d ¬ x x = y ¬ x x = z w = x z w z x
32 31 imbi1d ¬ x x = y ¬ x x = z w = x z w ¬ z y z x ¬ z y
33 30 32 albid ¬ x x = y ¬ x x = z w = x z z w ¬ z y z z x ¬ z y
34 25 33 anbi12d ¬ x x = y ¬ x x = z w = x w y z z w ¬ z y x y z z x ¬ z y
35 34 ex ¬ x x = y ¬ x x = z w = x w y z z w ¬ z y x y z z x ¬ z y
36 5 21 35 cbvexd ¬ x x = y ¬ x x = z w w y z z w ¬ z y x x y z z x ¬ z y
37 36 adantr ¬ x x = y ¬ x x = z w = x w w y z z w ¬ z y x x y z z x ¬ z y
38 25 37 imbi12d ¬ x x = y ¬ x x = z w = x w y w w y z z w ¬ z y x y x x y z z x ¬ z y
39 38 ex ¬ x x = y ¬ x x = z w = x w y w w y z z w ¬ z y x y x x y z z x ¬ z y
40 5 23 39 cbvald ¬ x x = y ¬ x x = z w w y w w y z z w ¬ z y x x y x x y z z x ¬ z y
41 2 40 mpbii ¬ x x = y ¬ x x = z x x y x x y z z x ¬ z y
42 41 19.21bi ¬ x x = y ¬ x x = z x y x x y z z x ¬ z y
43 42 ex ¬ x x = y ¬ x x = z x y x x y z z x ¬ z y
44 elirrv ¬ x x
45 elequ2 x = y x x x y
46 44 45 mtbii x = y ¬ x y
47 46 sps x x = y ¬ x y
48 47 pm2.21d x x = y x y x x y z z x ¬ z y
49 axregndlem1 x x = z x y x x y z z x ¬ z y
50 43 48 49 pm2.61ii x y x x y z z x ¬ z y