Description: A version of the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axrepnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axrepndlem2 | |
|
2 | nfnae | |
|
3 | nfnae | |
|
4 | 2 3 | nfan | |
5 | nfnae | |
|
6 | 4 5 | nfan | |
7 | nfnae | |
|
8 | nfnae | |
|
9 | 7 8 | nfan | |
10 | nfnae | |
|
11 | 9 10 | nfan | |
12 | nfcvf | |
|
13 | 12 | adantl | |
14 | nfcvf2 | |
|
15 | 14 | ad2antrr | |
16 | 13 15 | nfeld | |
17 | 16 | nf5rd | |
18 | sp | |
|
19 | 17 18 | impbid1 | |
20 | nfcvf2 | |
|
21 | 20 | ad2antlr | |
22 | nfcvf2 | |
|
23 | 22 | adantl | |
24 | 21 23 | nfeld | |
25 | 24 | nf5rd | |
26 | sp | |
|
27 | 25 26 | impbid1 | |
28 | 27 | anbi1d | |
29 | 6 28 | exbid | |
30 | 19 29 | bibi12d | |
31 | 11 30 | albid | |
32 | 31 | imbi2d | |
33 | 6 32 | exbid | |
34 | 1 33 | mpbid | |
35 | 34 | exp31 | |
36 | nfae | |
|
37 | nd2 | |
|
38 | 37 | aecoms | |
39 | nfae | |
|
40 | nd3 | |
|
41 | 40 | intnanrd | |
42 | 39 41 | nexd | |
43 | 38 42 | 2falsed | |
44 | 36 43 | alrimi | |
45 | 44 | a1d | |
46 | 45 | 19.8ad | |
47 | nfae | |
|
48 | nd4 | |
|
49 | nfae | |
|
50 | nd1 | |
|
51 | 50 | aecoms | |
52 | 51 | intnanrd | |
53 | 49 52 | nexd | |
54 | 48 53 | 2falsed | |
55 | 47 54 | alrimi | |
56 | 55 | a1d | |
57 | 56 | 19.8ad | |
58 | nfae | |
|
59 | nd1 | |
|
60 | nfae | |
|
61 | nd2 | |
|
62 | 61 | aecoms | |
63 | 62 | intnanrd | |
64 | 60 63 | nexd | |
65 | 59 64 | 2falsed | |
66 | 58 65 | alrimi | |
67 | 66 | a1d | |
68 | 67 | 19.8ad | |
69 | 35 46 57 68 | pm2.61iii | |