Metamath Proof Explorer


Theorem axrepnd

Description: A version of the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion axrepnd xyzφz=yzyzxxzxyyφ

Proof

Step Hyp Ref Expression
1 axrepndlem2 ¬xx=y¬xx=z¬yy=zxyzφz=yzzxxxyyφ
2 nfnae x¬xx=y
3 nfnae x¬xx=z
4 2 3 nfan x¬xx=y¬xx=z
5 nfnae x¬yy=z
6 4 5 nfan x¬xx=y¬xx=z¬yy=z
7 nfnae z¬xx=y
8 nfnae z¬xx=z
9 7 8 nfan z¬xx=y¬xx=z
10 nfnae z¬yy=z
11 9 10 nfan z¬xx=y¬xx=z¬yy=z
12 nfcvf ¬yy=z_yz
13 12 adantl ¬xx=y¬xx=z¬yy=z_yz
14 nfcvf2 ¬xx=y_yx
15 14 ad2antrr ¬xx=y¬xx=z¬yy=z_yx
16 13 15 nfeld ¬xx=y¬xx=z¬yy=zyzx
17 16 nf5rd ¬xx=y¬xx=z¬yy=zzxyzx
18 sp yzxzx
19 17 18 impbid1 ¬xx=y¬xx=z¬yy=zzxyzx
20 nfcvf2 ¬xx=z_zx
21 20 ad2antlr ¬xx=y¬xx=z¬yy=z_zx
22 nfcvf2 ¬yy=z_zy
23 22 adantl ¬xx=y¬xx=z¬yy=z_zy
24 21 23 nfeld ¬xx=y¬xx=z¬yy=zzxy
25 24 nf5rd ¬xx=y¬xx=z¬yy=zxyzxy
26 sp zxyxy
27 25 26 impbid1 ¬xx=y¬xx=z¬yy=zxyzxy
28 27 anbi1d ¬xx=y¬xx=z¬yy=zxyyφzxyyφ
29 6 28 exbid ¬xx=y¬xx=z¬yy=zxxyyφxzxyyφ
30 19 29 bibi12d ¬xx=y¬xx=z¬yy=zzxxxyyφyzxxzxyyφ
31 11 30 albid ¬xx=y¬xx=z¬yy=zzzxxxyyφzyzxxzxyyφ
32 31 imbi2d ¬xx=y¬xx=z¬yy=zyzφz=yzzxxxyyφyzφz=yzyzxxzxyyφ
33 6 32 exbid ¬xx=y¬xx=z¬yy=zxyzφz=yzzxxxyyφxyzφz=yzyzxxzxyyφ
34 1 33 mpbid ¬xx=y¬xx=z¬yy=zxyzφz=yzyzxxzxyyφ
35 34 exp31 ¬xx=y¬xx=z¬yy=zxyzφz=yzyzxxzxyyφ
36 nfae zxx=y
37 nd2 yy=x¬yzx
38 37 aecoms xx=y¬yzx
39 nfae xxx=y
40 nd3 xx=y¬zxy
41 40 intnanrd xx=y¬zxyyφ
42 39 41 nexd xx=y¬xzxyyφ
43 38 42 2falsed xx=yyzxxzxyyφ
44 36 43 alrimi xx=yzyzxxzxyyφ
45 44 a1d xx=yyzφz=yzyzxxzxyyφ
46 45 19.8ad xx=yxyzφz=yzyzxxzxyyφ
47 nfae zxx=z
48 nd4 xx=z¬yzx
49 nfae xxx=z
50 nd1 zz=x¬zxy
51 50 aecoms xx=z¬zxy
52 51 intnanrd xx=z¬zxyyφ
53 49 52 nexd xx=z¬xzxyyφ
54 48 53 2falsed xx=zyzxxzxyyφ
55 47 54 alrimi xx=zzyzxxzxyyφ
56 55 a1d xx=zyzφz=yzyzxxzxyyφ
57 56 19.8ad xx=zxyzφz=yzyzxxzxyyφ
58 nfae zyy=z
59 nd1 yy=z¬yzx
60 nfae xyy=z
61 nd2 zz=y¬zxy
62 61 aecoms yy=z¬zxy
63 62 intnanrd yy=z¬zxyyφ
64 60 63 nexd yy=z¬xzxyyφ
65 59 64 2falsed yy=zyzxxzxyyφ
66 58 65 alrimi yy=zzyzxxzxyyφ
67 66 a1d yy=zyzφz=yzyzxxzxyyφ
68 67 19.8ad yy=zxyzφz=yzyzxxzxyyφ
69 35 46 57 68 pm2.61iii xyzφz=yzyzxxzxyyφ