| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axrepndlem1 |
|
| 2 |
|
nfnae |
|
| 3 |
|
nfnae |
|
| 4 |
2 3
|
nfan |
|
| 5 |
|
nfnae |
|
| 6 |
|
nfnae |
|
| 7 |
5 6
|
nfan |
|
| 8 |
|
nfnae |
|
| 9 |
|
nfnae |
|
| 10 |
8 9
|
nfan |
|
| 11 |
|
nfs1v |
|
| 12 |
11
|
a1i |
|
| 13 |
|
nfcvf |
|
| 14 |
13
|
adantl |
|
| 15 |
|
nfcvf |
|
| 16 |
15
|
adantr |
|
| 17 |
14 16
|
nfeqd |
|
| 18 |
12 17
|
nfimd |
|
| 19 |
10 18
|
nfald |
|
| 20 |
7 19
|
nfexd |
|
| 21 |
|
nfcvd |
|
| 22 |
14 21
|
nfeld |
|
| 23 |
|
nfv |
|
| 24 |
21 16
|
nfeld |
|
| 25 |
7 12
|
nfald |
|
| 26 |
24 25
|
nfand |
|
| 27 |
23 26
|
nfexd |
|
| 28 |
22 27
|
nfbid |
|
| 29 |
10 28
|
nfald |
|
| 30 |
20 29
|
nfimd |
|
| 31 |
|
nfcvd |
|
| 32 |
|
nfcvf2 |
|
| 33 |
32
|
adantr |
|
| 34 |
31 33
|
nfeqd |
|
| 35 |
7 34
|
nfan1 |
|
| 36 |
|
nfcvd |
|
| 37 |
|
nfcvf2 |
|
| 38 |
37
|
adantl |
|
| 39 |
36 38
|
nfeqd |
|
| 40 |
10 39
|
nfan1 |
|
| 41 |
|
sbequ12r |
|
| 42 |
41
|
imbi1d |
|
| 43 |
42
|
adantl |
|
| 44 |
40 43
|
albid |
|
| 45 |
35 44
|
exbid |
|
| 46 |
|
elequ2 |
|
| 47 |
46
|
adantl |
|
| 48 |
|
elequ1 |
|
| 49 |
48
|
adantl |
|
| 50 |
41
|
adantl |
|
| 51 |
35 50
|
albid |
|
| 52 |
49 51
|
anbi12d |
|
| 53 |
52
|
ex |
|
| 54 |
4 26 53
|
cbvexd |
|
| 55 |
54
|
adantr |
|
| 56 |
47 55
|
bibi12d |
|
| 57 |
40 56
|
albid |
|
| 58 |
45 57
|
imbi12d |
|
| 59 |
58
|
ex |
|
| 60 |
4 30 59
|
cbvexd |
|
| 61 |
1 60
|
imbitrid |
|
| 62 |
61
|
imp |
|