Step |
Hyp |
Ref |
Expression |
1 |
|
axrepndlem1 |
|
2 |
|
nfnae |
|
3 |
|
nfnae |
|
4 |
2 3
|
nfan |
|
5 |
|
nfnae |
|
6 |
|
nfnae |
|
7 |
5 6
|
nfan |
|
8 |
|
nfnae |
|
9 |
|
nfnae |
|
10 |
8 9
|
nfan |
|
11 |
|
nfs1v |
|
12 |
11
|
a1i |
|
13 |
|
nfcvf |
|
14 |
13
|
adantl |
|
15 |
|
nfcvf |
|
16 |
15
|
adantr |
|
17 |
14 16
|
nfeqd |
|
18 |
12 17
|
nfimd |
|
19 |
10 18
|
nfald |
|
20 |
7 19
|
nfexd |
|
21 |
|
nfcvd |
|
22 |
14 21
|
nfeld |
|
23 |
|
nfv |
|
24 |
21 16
|
nfeld |
|
25 |
7 12
|
nfald |
|
26 |
24 25
|
nfand |
|
27 |
23 26
|
nfexd |
|
28 |
22 27
|
nfbid |
|
29 |
10 28
|
nfald |
|
30 |
20 29
|
nfimd |
|
31 |
|
nfcvd |
|
32 |
|
nfcvf2 |
|
33 |
32
|
adantr |
|
34 |
31 33
|
nfeqd |
|
35 |
7 34
|
nfan1 |
|
36 |
|
nfcvd |
|
37 |
|
nfcvf2 |
|
38 |
37
|
adantl |
|
39 |
36 38
|
nfeqd |
|
40 |
10 39
|
nfan1 |
|
41 |
|
sbequ12r |
|
42 |
41
|
imbi1d |
|
43 |
42
|
adantl |
|
44 |
40 43
|
albid |
|
45 |
35 44
|
exbid |
|
46 |
|
elequ2 |
|
47 |
46
|
adantl |
|
48 |
|
elequ1 |
|
49 |
48
|
adantl |
|
50 |
41
|
adantl |
|
51 |
35 50
|
albid |
|
52 |
49 51
|
anbi12d |
|
53 |
52
|
ex |
|
54 |
4 26 53
|
cbvexd |
|
55 |
54
|
adantr |
|
56 |
47 55
|
bibi12d |
|
57 |
40 56
|
albid |
|
58 |
45 57
|
imbi12d |
|
59 |
58
|
ex |
|
60 |
4 30 59
|
cbvexd |
|
61 |
1 60
|
syl5ib |
|
62 |
61
|
imp |
|