Metamath Proof Explorer


Theorem axrnegex

Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex . (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axrnegex A x A + x = 0

Proof

Step Hyp Ref Expression
1 elreal2 A 1 st A 𝑹 A = 1 st A 0 𝑹
2 1 simplbi A 1 st A 𝑹
3 m1r -1 𝑹 𝑹
4 mulclsr 1 st A 𝑹 -1 𝑹 𝑹 1 st A 𝑹 -1 𝑹 𝑹
5 2 3 4 sylancl A 1 st A 𝑹 -1 𝑹 𝑹
6 opelreal 1 st A 𝑹 -1 𝑹 0 𝑹 1 st A 𝑹 -1 𝑹 𝑹
7 5 6 sylibr A 1 st A 𝑹 -1 𝑹 0 𝑹
8 1 simprbi A A = 1 st A 0 𝑹
9 8 oveq1d A A + 1 st A 𝑹 -1 𝑹 0 𝑹 = 1 st A 0 𝑹 + 1 st A 𝑹 -1 𝑹 0 𝑹
10 addresr 1 st A 𝑹 1 st A 𝑹 -1 𝑹 𝑹 1 st A 0 𝑹 + 1 st A 𝑹 -1 𝑹 0 𝑹 = 1 st A + 𝑹 1 st A 𝑹 -1 𝑹 0 𝑹
11 2 5 10 syl2anc A 1 st A 0 𝑹 + 1 st A 𝑹 -1 𝑹 0 𝑹 = 1 st A + 𝑹 1 st A 𝑹 -1 𝑹 0 𝑹
12 pn0sr 1 st A 𝑹 1 st A + 𝑹 1 st A 𝑹 -1 𝑹 = 0 𝑹
13 12 opeq1d 1 st A 𝑹 1 st A + 𝑹 1 st A 𝑹 -1 𝑹 0 𝑹 = 0 𝑹 0 𝑹
14 df-0 0 = 0 𝑹 0 𝑹
15 13 14 eqtr4di 1 st A 𝑹 1 st A + 𝑹 1 st A 𝑹 -1 𝑹 0 𝑹 = 0
16 2 15 syl A 1 st A + 𝑹 1 st A 𝑹 -1 𝑹 0 𝑹 = 0
17 9 11 16 3eqtrd A A + 1 st A 𝑹 -1 𝑹 0 𝑹 = 0
18 oveq2 x = 1 st A 𝑹 -1 𝑹 0 𝑹 A + x = A + 1 st A 𝑹 -1 𝑹 0 𝑹
19 18 eqeq1d x = 1 st A 𝑹 -1 𝑹 0 𝑹 A + x = 0 A + 1 st A 𝑹 -1 𝑹 0 𝑹 = 0
20 19 rspcev 1 st A 𝑹 -1 𝑹 0 𝑹 A + 1 st A 𝑹 -1 𝑹 0 𝑹 = 0 x A + x = 0
21 7 17 20 syl2anc A x A + x = 0