| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elreal |
|
| 2 |
|
df-rex |
|
| 3 |
1 2
|
bitri |
|
| 4 |
|
neeq1 |
|
| 5 |
|
oveq1 |
|
| 6 |
5
|
eqeq1d |
|
| 7 |
6
|
rexbidv |
|
| 8 |
4 7
|
imbi12d |
|
| 9 |
|
df-0 |
|
| 10 |
9
|
eqeq2i |
|
| 11 |
|
vex |
|
| 12 |
11
|
eqresr |
|
| 13 |
10 12
|
bitri |
|
| 14 |
13
|
necon3bii |
|
| 15 |
|
recexsr |
|
| 16 |
15
|
ex |
|
| 17 |
|
opelreal |
|
| 18 |
17
|
anbi1i |
|
| 19 |
|
mulresr |
|
| 20 |
19
|
eqeq1d |
|
| 21 |
|
df-1 |
|
| 22 |
21
|
eqeq2i |
|
| 23 |
|
ovex |
|
| 24 |
23
|
eqresr |
|
| 25 |
22 24
|
bitri |
|
| 26 |
20 25
|
bitrdi |
|
| 27 |
26
|
pm5.32da |
|
| 28 |
18 27
|
bitrid |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
30
|
rspcev |
|
| 32 |
28 31
|
biimtrrdi |
|
| 33 |
32
|
expd |
|
| 34 |
33
|
rexlimdv |
|
| 35 |
16 34
|
syld |
|
| 36 |
14 35
|
biimtrid |
|
| 37 |
3 8 36
|
gencl |
|
| 38 |
37
|
imp |
|