| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axsegconlem1 |
|
| 2 |
1
|
ex |
|
| 3 |
|
simprll |
|
| 4 |
|
simprlr |
|
| 5 |
|
simpl |
|
| 6 |
|
simprr |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
7 8 9
|
axsegconlem8 |
|
| 11 |
7 8
|
axsegconlem7 |
|
| 12 |
7 8 9
|
axsegconlem10 |
|
| 13 |
7 8 9
|
axsegconlem9 |
|
| 14 |
|
fveq1 |
|
| 15 |
14
|
oveq2d |
|
| 16 |
15
|
oveq2d |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
17
|
ralbidv |
|
| 19 |
14
|
oveq2d |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
sumeq2sdv |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
18 22
|
anbi12d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
oveq1d |
|
| 26 |
|
oveq1 |
|
| 27 |
25 26
|
oveq12d |
|
| 28 |
27
|
eqeq2d |
|
| 29 |
28
|
ralbidv |
|
| 30 |
29
|
anbi1d |
|
| 31 |
23 30
|
rspc2ev |
|
| 32 |
10 11 12 13 31
|
syl112anc |
|
| 33 |
3 4 5 6 32
|
syl31anc |
|
| 34 |
33
|
ex |
|
| 35 |
2 34
|
pm2.61ine |
|
| 36 |
|
simpllr |
|
| 37 |
|
simplll |
|
| 38 |
|
simpr |
|
| 39 |
|
brbtwn |
|
| 40 |
36 37 38 39
|
syl3anc |
|
| 41 |
|
simplrl |
|
| 42 |
|
simplrr |
|
| 43 |
|
brcgr |
|
| 44 |
36 38 41 42 43
|
syl22anc |
|
| 45 |
40 44
|
anbi12d |
|
| 46 |
|
r19.41v |
|
| 47 |
45 46
|
bitr4di |
|
| 48 |
47
|
rexbidva |
|
| 49 |
35 48
|
mpbird |
|
| 50 |
49
|
3adant1 |
|