| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveere |
|
| 2 |
1
|
3ad2antl1 |
|
| 3 |
|
fveere |
|
| 4 |
3
|
3ad2antl2 |
|
| 5 |
|
fveere |
|
| 6 |
5
|
3ad2antl3 |
|
| 7 |
4 6
|
resubcld |
|
| 8 |
2 7
|
resubcld |
|
| 9 |
8
|
ralrimiva |
|
| 10 |
|
eleenn |
|
| 11 |
|
mptelee |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
9 13
|
mpbird |
|
| 15 |
|
fveecn |
|
| 16 |
15
|
3ad2antl1 |
|
| 17 |
|
fveecn |
|
| 18 |
17
|
3ad2antl2 |
|
| 19 |
|
fveecn |
|
| 20 |
19
|
3ad2antl3 |
|
| 21 |
|
1m0e1 |
|
| 22 |
21
|
oveq1i |
|
| 23 |
|
mullid |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
22 24
|
eqtrid |
|
| 26 |
|
subcl |
|
| 27 |
|
subcl |
|
| 28 |
26 27
|
sylan2 |
|
| 29 |
28
|
3impb |
|
| 30 |
29
|
mul02d |
|
| 31 |
25 30
|
oveq12d |
|
| 32 |
|
addrid |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
31 33
|
eqtr2d |
|
| 35 |
16 18 20 34
|
syl3anc |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
18 20
|
subcld |
|
| 38 |
16 37
|
nncand |
|
| 39 |
38
|
oveq1d |
|
| 40 |
39
|
sumeq2dv |
|
| 41 |
|
0elunit |
|
| 42 |
|
fveq1 |
|
| 43 |
|
fveq2 |
|
| 44 |
|
fveq2 |
|
| 45 |
|
fveq2 |
|
| 46 |
44 45
|
oveq12d |
|
| 47 |
43 46
|
oveq12d |
|
| 48 |
|
eqid |
|
| 49 |
|
ovex |
|
| 50 |
47 48 49
|
fvmpt |
|
| 51 |
42 50
|
sylan9eq |
|
| 52 |
51
|
oveq2d |
|
| 53 |
52
|
oveq2d |
|
| 54 |
53
|
eqeq2d |
|
| 55 |
54
|
ralbidva |
|
| 56 |
51
|
oveq2d |
|
| 57 |
56
|
oveq1d |
|
| 58 |
57
|
sumeq2dv |
|
| 59 |
58
|
eqeq1d |
|
| 60 |
55 59
|
anbi12d |
|
| 61 |
|
oveq2 |
|
| 62 |
61
|
oveq1d |
|
| 63 |
|
oveq1 |
|
| 64 |
62 63
|
oveq12d |
|
| 65 |
64
|
eqeq2d |
|
| 66 |
65
|
ralbidv |
|
| 67 |
66
|
anbi1d |
|
| 68 |
60 67
|
rspc2ev |
|
| 69 |
41 68
|
mp3an2 |
|
| 70 |
14 36 40 69
|
syl12anc |
|
| 71 |
70
|
3expb |
|
| 72 |
71
|
adantll |
|
| 73 |
|
fveq1 |
|
| 74 |
73
|
oveq2d |
|
| 75 |
74
|
oveq1d |
|
| 76 |
75
|
eqeq2d |
|
| 77 |
76
|
ralbidv |
|
| 78 |
77
|
anbi1d |
|
| 79 |
78
|
2rexbidv |
|
| 80 |
72 79
|
imbitrrid |
|
| 81 |
80
|
imp |
|