Metamath Proof Explorer


Theorem axsegconlem9

Description: Lemma for axsegcon . Show that B F is congruent to C D . (Contributed by Scott Fenton, 19-Sep-2013)

Ref Expression
Hypotheses axsegconlem2.1 S=p=1NApBp2
axsegconlem7.2 T=p=1NCpDp2
axsegconlem8.3 F=k1NS+TBkTAkS
Assertion axsegconlem9 A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NBiFi2=i=1NCiDi2

Proof

Step Hyp Ref Expression
1 axsegconlem2.1 S=p=1NApBp2
2 axsegconlem7.2 T=p=1NCpDp2
3 axsegconlem8.3 F=k1NS+TBkTAkS
4 fveq2 k=iBk=Bi
5 4 oveq2d k=iS+TBk=S+TBi
6 fveq2 k=iAk=Ai
7 6 oveq2d k=iTAk=TAi
8 5 7 oveq12d k=iS+TBkTAk=S+TBiTAi
9 8 oveq1d k=iS+TBkTAkS=S+TBiTAiS
10 ovex S+TBiTAiSV
11 9 3 10 fvmpt i1NFi=S+TBiTAiS
12 11 adantl A𝔼NB𝔼NABC𝔼ND𝔼Ni1NFi=S+TBiTAiS
13 12 oveq2d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBiFi=BiS+TBiTAiS
14 1 axsegconlem4 A𝔼NB𝔼NS
15 14 3adant3 A𝔼NB𝔼NABS
16 15 ad2antrr A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS
17 simpl2 A𝔼NB𝔼NABC𝔼ND𝔼NB𝔼N
18 fveere B𝔼Ni1NBi
19 17 18 sylan A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBi
20 16 19 remulcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBi
21 20 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBi
22 2 axsegconlem4 C𝔼ND𝔼NT
23 readdcl STS+T
24 15 22 23 syl2an A𝔼NB𝔼NABC𝔼ND𝔼NS+T
25 24 adantr A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+T
26 25 19 remulcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+TBi
27 22 ad2antlr A𝔼NB𝔼NABC𝔼ND𝔼Ni1NT
28 simpl1 A𝔼NB𝔼NABC𝔼ND𝔼NA𝔼N
29 fveere A𝔼Ni1NAi
30 28 29 sylan A𝔼NB𝔼NABC𝔼ND𝔼Ni1NAi
31 27 30 remulcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAi
32 26 31 resubcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+TBiTAi
33 32 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+TBiTAi
34 16 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS
35 1 axsegconlem6 A𝔼NB𝔼NAB0<S
36 35 gt0ne0d A𝔼NB𝔼NABS0
37 36 ad2antrr A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS0
38 21 33 34 37 divsubdird A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBiS+TBiTAiS=SBiSS+TBiTAiS
39 26 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+TBi
40 31 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAi
41 21 39 40 subsubd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBiS+TBiTAi=SBi-S+TBi+TAi
42 27 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NT
43 19 renegcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBi
44 43 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBi
45 30 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NAi
46 42 44 45 adddid A𝔼NB𝔼NABC𝔼ND𝔼Ni1NT-Bi+Ai=TBi+TAi
47 44 45 addcomd A𝔼NB𝔼NABC𝔼ND𝔼Ni1N-Bi+Ai=Ai+Bi
48 19 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBi
49 45 48 negsubd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NAi+Bi=AiBi
50 47 49 eqtrd A𝔼NB𝔼NABC𝔼ND𝔼Ni1N-Bi+Ai=AiBi
51 50 oveq2d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NT-Bi+Ai=TAiBi
52 25 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+T
53 52 34 negsubdi2d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+T-S=SS+T
54 34 42 pncan2d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+T-S=T
55 54 negeqd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS+T-S=T
56 53 55 eqtr3d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSS+T=T
57 56 oveq1d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSS+TBi=TBi
58 34 52 48 subdird A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSS+TBi=SBiS+TBi
59 mulneg12 TBiTBi=TBi
60 42 48 59 syl2anc A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTBi=TBi
61 57 58 60 3eqtr3rd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTBi=SBiS+TBi
62 61 oveq1d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTBi+TAi=SBi-S+TBi+TAi
63 46 51 62 3eqtr3rd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBi-S+TBi+TAi=TAiBi
64 41 63 eqtrd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBiS+TBiTAi=TAiBi
65 64 oveq1d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBiS+TBiTAiS=TAiBiS
66 48 34 37 divcan3d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBiS=Bi
67 66 oveq1d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NSBiSS+TBiTAiS=BiS+TBiTAiS
68 38 65 67 3eqtr3rd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBiS+TBiTAiS=TAiBiS
69 13 68 eqtrd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBiFi=TAiBiS
70 69 oveq1d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBiFi2=TAiBiS2
71 30 19 resubcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NAiBi
72 27 71 remulcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBi
73 72 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBi
74 73 34 37 sqdivd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBiS2=TAiBi2S2
75 71 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NAiBi
76 42 75 sqmuld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBi2=T2AiBi2
77 2 axsegconlem2 C𝔼ND𝔼NT
78 77 ad2antlr A𝔼NB𝔼NABC𝔼ND𝔼Ni1NT
79 2 axsegconlem3 C𝔼ND𝔼N0T
80 79 ad2antlr A𝔼NB𝔼NABC𝔼ND𝔼Ni1N0T
81 resqrtth T0TT2=T
82 78 80 81 syl2anc A𝔼NB𝔼NABC𝔼ND𝔼Ni1NT2=T
83 82 oveq1d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NT2AiBi2=TAiBi2
84 76 83 eqtrd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBi2=TAiBi2
85 1 axsegconlem2 A𝔼NB𝔼NS
86 1 axsegconlem3 A𝔼NB𝔼N0S
87 resqrtth S0SS2=S
88 85 86 87 syl2anc A𝔼NB𝔼NS2=S
89 88 3adant3 A𝔼NB𝔼NABS2=S
90 89 ad2antrr A𝔼NB𝔼NABC𝔼ND𝔼Ni1NS2=S
91 84 90 oveq12d A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBi2S2=TAiBi2S
92 70 74 91 3eqtrd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NBiFi2=TAiBi2S
93 92 sumeq2dv A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NBiFi2=i=1NTAiBi2S
94 fzfid A𝔼NB𝔼NABC𝔼ND𝔼N1NFin
95 77 adantl A𝔼NB𝔼NABC𝔼ND𝔼NT
96 95 recnd A𝔼NB𝔼NABC𝔼ND𝔼NT
97 71 resqcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NAiBi2
98 97 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NAiBi2
99 94 96 98 fsummulc2 A𝔼NB𝔼NABC𝔼ND𝔼NTi=1NAiBi2=i=1NTAiBi2
100 99 oveq1d A𝔼NB𝔼NABC𝔼ND𝔼NTi=1NAiBi2S=i=1NTAiBi2S
101 fveq2 p=iCp=Ci
102 fveq2 p=iDp=Di
103 101 102 oveq12d p=iCpDp=CiDi
104 103 oveq1d p=iCpDp2=CiDi2
105 104 cbvsumv p=1NCpDp2=i=1NCiDi2
106 2 105 eqtri T=i=1NCiDi2
107 fveq2 i=pAi=Ap
108 fveq2 i=pBi=Bp
109 107 108 oveq12d i=pAiBi=ApBp
110 109 oveq1d i=pAiBi2=ApBp2
111 110 cbvsumv i=1NAiBi2=p=1NApBp2
112 111 1 eqtr4i i=1NAiBi2=S
113 106 112 oveq12i Ti=1NAiBi2=i=1NCiDi2S
114 eqid i=1NAiBi2=i=1NAiBi2
115 114 axsegconlem2 A𝔼NB𝔼Ni=1NAiBi2
116 115 3adant3 A𝔼NB𝔼NABi=1NAiBi2
117 116 adantr A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NAiBi2
118 95 117 remulcld A𝔼NB𝔼NABC𝔼ND𝔼NTi=1NAiBi2
119 118 recnd A𝔼NB𝔼NABC𝔼ND𝔼NTi=1NAiBi2
120 eqid i=1NCiDi2=i=1NCiDi2
121 120 axsegconlem2 C𝔼ND𝔼Ni=1NCiDi2
122 121 adantl A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NCiDi2
123 122 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NCiDi2
124 85 3adant3 A𝔼NB𝔼NABS
125 124 adantr A𝔼NB𝔼NABC𝔼ND𝔼NS
126 125 recnd A𝔼NB𝔼NABC𝔼ND𝔼NS
127 86 3adant3 A𝔼NB𝔼NAB0S
128 sqrt00 S0SS=0S=0
129 128 necon3bid S0SS0S0
130 124 127 129 syl2anc A𝔼NB𝔼NABS0S0
131 36 130 mpbid A𝔼NB𝔼NABS0
132 131 adantr A𝔼NB𝔼NABC𝔼ND𝔼NS0
133 119 123 126 132 divmul3d A𝔼NB𝔼NABC𝔼ND𝔼NTi=1NAiBi2S=i=1NCiDi2Ti=1NAiBi2=i=1NCiDi2S
134 113 133 mpbiri A𝔼NB𝔼NABC𝔼ND𝔼NTi=1NAiBi2S=i=1NCiDi2
135 78 97 remulcld A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBi2
136 135 recnd A𝔼NB𝔼NABC𝔼ND𝔼Ni1NTAiBi2
137 94 126 136 132 fsumdivc A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NTAiBi2S=i=1NTAiBi2S
138 100 134 137 3eqtr3rd A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NTAiBi2S=i=1NCiDi2
139 93 138 eqtrd A𝔼NB𝔼NABC𝔼ND𝔼Ni=1NBiFi2=i=1NCiDi2