Metamath Proof Explorer


Theorem axsepgfromrep

Description: A more general version axsepg of the axiom scheme of separation ax-sep derived from the axiom scheme of replacement ax-rep (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on z , ph (that is, variable z may occur in formula ph ). See linked statements for more information. (Contributed by NM, 11-Sep-2006) Remove dependencies on ax-9 to ax-13 . (Revised by SN, 25-Sep-2023) Use ax-sep instead (or axsepg if the extra generality is needed). (New usage is discouraged.)

Ref Expression
Assertion axsepgfromrep y x x y x z φ

Proof

Step Hyp Ref Expression
1 axrep6 w * x w = x φ y x x y w z w = x φ
2 euequ ∃! x x = w
3 2 eumoi * x x = w
4 equcomi w = x x = w
5 4 adantr w = x φ x = w
6 5 moimi * x x = w * x w = x φ
7 3 6 ax-mp * x w = x φ
8 1 7 mpg y x x y w z w = x φ
9 df-rex w z w = x φ w w z w = x φ
10 an12 w = x w z φ w z w = x φ
11 10 exbii w w = x w z φ w w z w = x φ
12 elequ1 w = x w z x z
13 12 anbi1d w = x w z φ x z φ
14 13 equsexvw w w = x w z φ x z φ
15 9 11 14 3bitr2i w z w = x φ x z φ
16 15 bibi2i x y w z w = x φ x y x z φ
17 16 albii x x y w z w = x φ x x y x z φ
18 17 exbii y x x y w z w = x φ y x x y x z φ
19 8 18 mpbi y x x y x z φ