Step |
Hyp |
Ref |
Expression |
1 |
|
axtrkge.p |
|
2 |
|
axtrkge.d |
|
3 |
|
axtrkge.i |
|
4 |
|
axtgeucl.g |
|
5 |
|
axtgeucl.1 |
|
6 |
|
axtgeucl.2 |
|
7 |
|
axtgeucl.3 |
|
8 |
|
axtgeucl.4 |
|
9 |
|
axtgeucl.5 |
|
10 |
|
axtgeucl.6 |
|
11 |
|
axtgeucl.7 |
|
12 |
|
axtgeucl.8 |
|
13 |
1 2 3
|
istrkge |
|
14 |
4 13
|
sylib |
|
15 |
14
|
simprd |
|
16 |
|
oveq1 |
|
17 |
16
|
eleq2d |
|
18 |
|
neeq1 |
|
19 |
17 18
|
3anbi13d |
|
20 |
|
oveq1 |
|
21 |
20
|
eleq2d |
|
22 |
|
oveq1 |
|
23 |
22
|
eleq2d |
|
24 |
21 23
|
3anbi12d |
|
25 |
24
|
2rexbidv |
|
26 |
19 25
|
imbi12d |
|
27 |
26
|
2ralbidv |
|
28 |
|
oveq1 |
|
29 |
28
|
eleq2d |
|
30 |
29
|
3anbi2d |
|
31 |
|
eleq1 |
|
32 |
31
|
3anbi1d |
|
33 |
32
|
2rexbidv |
|
34 |
30 33
|
imbi12d |
|
35 |
34
|
2ralbidv |
|
36 |
|
oveq2 |
|
37 |
36
|
eleq2d |
|
38 |
37
|
3anbi2d |
|
39 |
|
eleq1 |
|
40 |
39
|
3anbi2d |
|
41 |
40
|
2rexbidv |
|
42 |
38 41
|
imbi12d |
|
43 |
42
|
2ralbidv |
|
44 |
27 35 43
|
rspc3v |
|
45 |
5 6 7 44
|
syl3anc |
|
46 |
15 45
|
mpd |
|
47 |
|
eleq1 |
|
48 |
|
eleq1 |
|
49 |
|
neeq2 |
|
50 |
47 48 49
|
3anbi123d |
|
51 |
50
|
imbi1d |
|
52 |
|
oveq2 |
|
53 |
52
|
eleq2d |
|
54 |
53
|
3anbi1d |
|
55 |
|
eleq1 |
|
56 |
55
|
3anbi3d |
|
57 |
56
|
2rexbidv |
|
58 |
54 57
|
imbi12d |
|
59 |
51 58
|
rspc2v |
|
60 |
8 9 59
|
syl2anc |
|
61 |
46 60
|
mpd |
|
62 |
10 11 12 61
|
mp3and |
|