| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axtrkge.p |
|
| 2 |
|
axtrkge.d |
|
| 3 |
|
axtrkge.i |
|
| 4 |
|
axtgeucl.g |
|
| 5 |
|
axtgeucl.1 |
|
| 6 |
|
axtgeucl.2 |
|
| 7 |
|
axtgeucl.3 |
|
| 8 |
|
axtgeucl.4 |
|
| 9 |
|
axtgeucl.5 |
|
| 10 |
|
axtgeucl.6 |
|
| 11 |
|
axtgeucl.7 |
|
| 12 |
|
axtgeucl.8 |
|
| 13 |
1 2 3
|
istrkge |
|
| 14 |
4 13
|
sylib |
|
| 15 |
14
|
simprd |
|
| 16 |
|
oveq1 |
|
| 17 |
16
|
eleq2d |
|
| 18 |
|
neeq1 |
|
| 19 |
17 18
|
3anbi13d |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
eleq2d |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
eleq2d |
|
| 24 |
21 23
|
3anbi12d |
|
| 25 |
24
|
2rexbidv |
|
| 26 |
19 25
|
imbi12d |
|
| 27 |
26
|
2ralbidv |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
eleq2d |
|
| 30 |
29
|
3anbi2d |
|
| 31 |
|
eleq1 |
|
| 32 |
31
|
3anbi1d |
|
| 33 |
32
|
2rexbidv |
|
| 34 |
30 33
|
imbi12d |
|
| 35 |
34
|
2ralbidv |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
eleq2d |
|
| 38 |
37
|
3anbi2d |
|
| 39 |
|
eleq1 |
|
| 40 |
39
|
3anbi2d |
|
| 41 |
40
|
2rexbidv |
|
| 42 |
38 41
|
imbi12d |
|
| 43 |
42
|
2ralbidv |
|
| 44 |
27 35 43
|
rspc3v |
|
| 45 |
5 6 7 44
|
syl3anc |
|
| 46 |
15 45
|
mpd |
|
| 47 |
|
eleq1 |
|
| 48 |
|
eleq1 |
|
| 49 |
|
neeq2 |
|
| 50 |
47 48 49
|
3anbi123d |
|
| 51 |
50
|
imbi1d |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
eleq2d |
|
| 54 |
53
|
3anbi1d |
|
| 55 |
|
eleq1 |
|
| 56 |
55
|
3anbi3d |
|
| 57 |
56
|
2rexbidv |
|
| 58 |
54 57
|
imbi12d |
|
| 59 |
51 58
|
rspc2v |
|
| 60 |
8 9 59
|
syl2anc |
|
| 61 |
46 60
|
mpd |
|
| 62 |
10 11 12 61
|
mp3and |
|