Metamath Proof Explorer


Theorem ballotlem1

Description: The size of the universe is a binomial coefficient. (Contributed by Thierry Arnoux, 23-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
Assertion ballotlem1 O = ( M + N M)

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 3 fveq2i O = c 𝒫 1 M + N | c = M
5 fzfi 1 M + N Fin
6 1 nnzi M
7 hashbc 1 M + N Fin M ( 1 M + N M) = c 𝒫 1 M + N | c = M
8 5 6 7 mp2an ( 1 M + N M) = c 𝒫 1 M + N | c = M
9 1 2 pm3.2i M N
10 nnaddcl M N M + N
11 nnnn0 M + N M + N 0
12 9 10 11 mp2b M + N 0
13 hashfz1 M + N 0 1 M + N = M + N
14 12 13 ax-mp 1 M + N = M + N
15 14 oveq1i ( 1 M + N M) = ( M + N M)
16 4 8 15 3eqtr2i O = ( M + N M)