Metamath Proof Explorer


Theorem ballotlem8

Description: There are as many countings with ties starting with a ballot for A as there are starting with a ballot for B . (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
ballotth.r R = c O E S c c
Assertion ballotlem8 c O E | 1 c = c O E | ¬ 1 c

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 ballotth.s S = c O E i 1 M + N if i I c I c + 1 - i i
10 ballotth.r R = c O E S c c
11 1 2 3 4 5 6 7 8 9 10 ballotlem7 R c O E | 1 c : c O E | 1 c 1-1 onto c O E | ¬ 1 c
12 1 2 3 ballotlemoex O V
13 difexg O V O E V
14 12 13 ax-mp O E V
15 14 rabex c O E | 1 c V
16 15 f1oen R c O E | 1 c : c O E | 1 c 1-1 onto c O E | ¬ 1 c c O E | 1 c c O E | ¬ 1 c
17 hasheni c O E | 1 c c O E | ¬ 1 c c O E | 1 c = c O E | ¬ 1 c
18 11 16 17 mp2b c O E | 1 c = c O E | ¬ 1 c